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• Many equations we have learnt so far can be applied only to closed

systems of constant composition.

• This limitation simply means that we have been dealing with a special

case.

• To fix the state of a system, the values of two independent variables

and the mole numbers of the components must be fixed.

• We have been able to neglect the mole numbers of the components

so far because we have studied only closed systems of fixed

composition.

• Now we will extend our discussion to the more general systems

where the system’s composition is free to change.



For a closed system of fixed composition, the extensive thermodynamic

properties such as 𝑉, 𝑈, 𝑆, 𝐴, and 𝐺 are functions of any pair of

convenient independent variables.

For example:

suggests that 𝐺 is a natural function of 𝑇 and 𝑃. That is 𝐺 = 𝑓(𝑇, 𝑃). The

total differential of 𝐺 would be

When the composition of a system varies, the mole numbers of the

components are additional independent variables and we have



Therefore, the total differential of 𝐺 becomes

The partial derivative Τ𝜕𝐺 𝜕𝑛𝑖 𝑇,𝑃,𝑛𝑗, in which 𝑖 ≠ 𝑗, represents the rate

of increase in the Gibbs function of the system per mole of component 𝑖
added to the system when 𝑇, 𝑃, and the other mole numbers are held

constant.

The summation is over all components of the system.

If the composition is constant, so that the 𝑑𝑛𝑖 terms are all zero, 

becomes 



 
We can write  

 
Here we recognize explicitly that 𝑆 and 𝑉 also are functions of the mole numbers as well as functions of 𝑇 
and 𝑃. The partial derivative of 𝐺 with respect to the mole number 𝑛𝑖 at constant 𝑇 and 𝑃 and mole numbers 
𝑛𝑗 ≠ 𝑛𝑖 is defined as 

 
where 𝜇𝑖  is the chemical potential. 

 
The Helmholtz free energy 

 
Therefore 

 

 
Therefore, the chemical potential for the component 𝑖 may also be defined as 

 
Similarly, we can show from other commonly used thermodynamic relationships that 

   

   

  
 

Because most chemical, biological, and geological processes occur at constant temperature and pressure, it 
is convenient to provide a special name for the partial derivatives of all thermodynamic properties with 
respect to mole number at constant pressure and temperature. They are called partial molar properties, and 
they are defined by the relationship 

 
where 𝐽 is any thermodynamic property. The partial molar Gibbs function is the chemical potential. However, 
the following derivatives are partial molar properties, but they are not chemical potentials: 

 



because chemical potentials are derivatives with respect to the mole numbers with the natural independent 
variables held constant. 
 
CRITERIA OF EQUILIBRIUM AND SPONTANEITY IN SYSTEMS OF VARIABLE COMPOSITION 
For systems having a fixed composition (closed systems) we already know that 

 
These relations are valid for all closed systems in which only 𝑃𝑑𝑉 work is performed. Similarly, 

 
is valid for all closed systems in which work other than pressure-volume work is performed. In this expression, 
the equality applies to a reversible process and the inequality applies to an irreversible process, whether the 
change of state is spontaneous or non-spontaneous.  
 
If the change is spontaneous, 𝑑𝐺 < 0 (that is, 𝑑𝐺 is negative), and ð𝑊net < 0 (that is,ð𝑊net is negative), so 
that in absolute magnitude, |𝑑𝐺| ≥ |ð𝑊net|. 
 
If the change of state is non-spontaneous, 𝑑𝐺 > 0 (that is, 𝑑𝐺 is positive), and ð𝑊net > 0 (that is,ð𝑊net is 
positive), so that in absolute magnitude, |𝑑𝐺| ≤ |ð𝑊net|. 
 
Thus, for a spontaneous change of state, the magnitude of 𝑑𝐺 is equal to the maximum non-𝑃𝑉 work that 
can be performed by the system, whereas, for a non-spontaneous change of state, the magnitude of 𝑑𝐺 is 
equal to the minimum non-𝑃𝑉 work that must be performed on the system to bring about the change in 
state.  
 
As 𝐺 is a state function, the value of 𝑑𝐺 is the same for a given change of state, whether it is carried out 
reversibly or irreversibly; it is the value of 𝑑𝑊 that depends on reversibility. 
If the 𝑇 and 𝑃 are constants, then from 

 
we have 

 
which means that the criteria for spontaneity and equilibrium become (when the only constraint on the 
system is the constant pressure of the atmosphere and only 𝑃𝑑𝑉 work is performed) 

 
When the system is placed under additional constraints, the relationships for non-𝑃𝑑𝑉 work are 

 
in which the equality applies to a reversible process and the inequality applies to an irreversible process. 
 
The chemical potential for chemical, biological, or geological systems is analogous to the height, or 
gravitational potential, for a gravitational system; chemical, biological, or geological systems change 
spontaneously in the direction of decreasing chemical potential, just as an object in a gravitational field moves 
spontaneously in the direction of decreasing gravitational potential (downward). 
 
 



In this closed system, any loss of iodine from the water

phase is accompanied by an equivalent gain in the carbon

tetrachloride thus,
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HOMOGENEOUS FUNCTIONS AND THE GIBBS-DUHEM RELATION 
In connection with the development of the thermodynamic concept of partial molar quantities, it is desirable 
to be familiar with a mathematical relationship known as Euler’s theorem. As this theorem is stated with 
reference to “homogeneous” functions, we will consider briefly the nature of these functions. 
Definition: As a simple example, let us consider the function 

𝑢(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 
If we replace the variables 𝑥 and 𝑦 by 𝜆𝑥 and 𝜆𝑦 respectively, then we have the transformed function 

𝑢∗(𝜆𝑥, 𝜆𝑦) = 𝑎(𝜆𝑥)2 + 𝑏(𝜆𝑥)(𝜆𝑦) + 𝑐(𝜆𝑦)2 = 𝜆2(𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2) = 𝜆2𝑢(𝑥, 𝑦) 
We say that 𝑢(𝑥, 𝑦) is a homogeneous function of degree 2. Euler’s theorem says that, for any homogeneous 
function, 𝑓(𝑥, 𝑦), of degree 𝑛, 

𝑥 (
𝜕𝑓

𝜕𝑥
)

𝑦
+ 𝑦 (

𝜕𝑓

𝜕𝑦
)

𝑥

= 𝑛𝑓(𝑥, 𝑦) 

Homogeneous functions of degree 0 and 1 are called intensive and extensive properties of a system. For 
example, the volume 𝑉, or the Gibbs free energy 𝐺 of a system are extensive properties, while molar volume 
�̅�, or density 𝜌 are intensive properties. Say, for a system having two components, with mole numbers 𝑛1 and 
𝑛2, then, the volume of the system is 

𝑉 = 𝑓(𝑛1, 𝑛2) 
Since volume is an extensive property, applying Euler’s theorem, we have 

𝑛1 (
𝜕𝑉

𝜕𝑛1
)

𝑛2

+ 𝑛2 (
𝜕𝑉

𝜕𝑛2
)

𝑛1

= 𝑉 ⇒ 𝑛1�̅�1 + 𝑛2�̅�2 = 𝑉 

where, �̅�1 and �̅�2 are the partial molar volumes of the two components. Similarly, the Gibbs free energy 𝐺 is 
an extensive property. Thus, 𝐺 = 𝑓(𝑝, 𝑇, 𝑛1, 𝑛2). Applying Euler’s theorem at constant 𝑇 and 𝑝, we have 

𝑛1 (
𝜕𝐺

𝜕𝑛1
)

𝑝,𝑇,𝑛2

+ 𝑛2 (
𝜕𝐺

𝜕𝑛2
)

𝑝,𝑇,𝑛1

= 𝐺 

∴ 𝐺 = 𝑛1𝜇1 + 𝑛2𝜇2 
The total differential of 𝐺 at constant 𝑇 and 𝑝 is 

𝑑𝐺𝑝,𝑇 = 𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇2 + 𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 (1) 
Also, 

𝑑𝐺𝑝,𝑇 = (
𝜕𝐺

𝜕𝑛1
)

𝑝,𝑇,𝑛2

𝑑𝑛1 + (
𝜕𝐺

𝜕𝑛2
)

𝑝,𝑇,𝑛1

𝑑𝑛2 

or, 𝑑𝐺𝑝,𝑇 = 𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 (2) 
Comparing Eqs. (1) and (2), we have 

𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇2 + 𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 = 𝜇1𝑑𝑛1 + 𝜇2𝑑𝑛2 
or, 𝑛1𝑑𝜇1 + 𝑛2𝑑𝜇2 (3) 

Eq. (3) is called the Gibbs-Duhem equation. For a general multi-component system (say, having some 𝑛 
number of components), Gibbs-Duhem relation may be written as 

∑ 𝑛𝑖𝑑𝜇𝑖

𝑛

𝑖=1

= 0 

 
CHEMICAL EQUILIBRIUM IN SYSTEMS OF VARIABLE COMPOSITION 
We can apply the criterion of equilibrium expressed in 

∑ 𝜇𝑖𝑑𝑛𝑖 ≤ 0 (constant 𝑇, 𝑃)

𝐼

 

to chemically reacting systems. Consider the reaction 
𝑎𝐴 + 𝑏𝐵 + ⋯ = 𝑟𝑅 + 𝑠𝑆 + ⋯ 

in which all reactants and products are in the same phase. If this chemical reaction is at equilibrium at a fixed 
pressure and temperature, it follows from  

𝑑𝐺 = ∑ 𝜇𝑖𝑑𝑛𝑖

𝑖

 and ∑ 𝜇𝑖𝑑𝑛𝑖 ≤ 0 (constant 𝑇, 𝑃)

𝐼

 

that 
𝑑𝐺 = 𝜇𝐴𝑑𝑛𝐴 + 𝜇𝐵𝑑𝑛𝐵 + ⋯ + 𝜇𝑅𝑑𝑛𝑅 + 𝜇𝑆𝑑𝑛𝑆 + ⋯ = 0 

However, the various 𝑑𝑛’s in the above equation are not independent, but, in view of the stoichiometry of 
the reaction, they must be related as follows: 
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−
𝑑𝑛𝐴

𝑎
= −

𝑑𝑛𝐵

𝑏
= ⋯ =

𝑑𝑛𝑅

𝑟
=

𝑑𝑛𝑆

𝑠
= ⋯ 

As reactants disappear and products appear in the reaction, the corresponding 𝑑𝑛’s in the above equation 
have opposite signs. In view of the series of equalities in this equation, let us define a quantity 𝑑𝜉 such that 

𝑑𝜉 = −
𝑑𝑛𝐴

𝑎
= −

𝑑𝑛𝐵

𝑏
= ⋯ =

𝑑𝑛𝑅

𝑟
=

𝑑𝑛𝑆

𝑠
= ⋯ =

𝑑𝑛𝑖

𝜈𝑖
 

in which 𝜈𝑖 is merely a generalized notation for the dimensionless stoichiometric coefficients, −𝑎,  − 𝑏,  𝑟,  𝑠, 
and so on. The quantity 𝜉 is called the extent of reaction or the progress variable, and it has the dimensions 
of amount of substance and has the unit mol. Using the last equation,  

𝑑𝐺 = 𝜇𝐴𝑑𝑛𝐴 + 𝜇𝐵𝑑𝑛𝐵 + ⋯ + 𝜇𝑅𝑑𝑛𝑅 + 𝜇𝑆𝑑𝑛𝑆 + ⋯ = 0 
can be rewritten as 

𝑑𝐺 = −𝑎𝜇𝐴𝑑𝜉 − 𝑏𝜇𝐵𝑑𝜉 − ⋯ + 𝑟𝜇𝑅𝑑𝜉 + 𝑠𝜇𝑆𝑑𝜉 + ⋯ = 0 
Alternatively, 

(
𝜕𝐺

𝜕𝜉
)

𝑇,𝑃

= 𝑟𝜇𝑅 + 𝑠𝜇𝑆 − 𝑎𝜇𝐴 − 𝑏𝜇𝐵 = 0 

is a criterion of equilibrium at constant temperature and pressure. The derivative (𝜕𝐺 𝜕𝜉⁄ )𝑇,𝑃 is the slope of 
a plot of the Gibbs function of the system 𝐺 against 𝜉, the progress variable. When 𝜉 = 0, the system is all 
reactants, and when 𝜉 = 1, the system is all products. At equilibrium, 𝐺 is at a minimum, and the slope is 
equal to zero. If (𝜕𝐺 𝜕𝜉⁄ )𝑇,𝑃 = 𝑟𝜇𝑅 + 𝑠𝜇𝑆 − 𝑎𝜇𝐴 − 𝑏𝜇𝐵 = 0 is integrated with respect to 𝜉 from 𝜉 = 0 to 

𝜉 = 1 at constant values of the chemical potentials (fixed composition of the reacting mixture), then we 
obtain, at equilibrium, 

 

Δ𝐺𝑚 = 𝐺𝑚2 − 𝐺𝑚1 = ∫ (
𝜕𝐺

𝜕𝜉
)

𝑇,𝑃

𝑑𝜉
1

0

= ∑ 𝜈𝑖

𝑖

𝜇𝑖 = 0 

in which it is understood that 𝜈𝑖 is a negative number for the stoichiometric coefficients of the reactants and 
a positive number for the products. The result is a molar quantity, because the integration leads to a mole of 
reaction in the sense given in the definition of mole. As the composition of the reacting mixture does not 
change when one mole of reaction occurs, we say that we are using an “infinite copy model”, which is a 
system so large that the conditions of constant composition are satisfied. Another way of writing the above 
equation is 

∑(|𝜈𝑖|𝜇𝑖)reactants

𝑖

= ∑(|𝜈𝑖|𝜇𝑖)products

𝑖

 

The concept of escaping tendency also can be applied to the chemical reaction 𝑎𝐴 + 𝑏𝐵 + ⋯ = 𝑟𝑅 + 𝑠𝑆 +
⋯. At equilibrium, from the above equation, we can say that the sum of the escaping tendencies of the 
reactants is equal to the sum of the escaping tendencies of the products. For a chemical transformation 
capable of undergoing a spontaneous change, it follows from 

∑ 𝜇𝑖𝑑𝑛𝑖 ≤ 0 (constant 𝑇, 𝑃)

𝑖

 and 𝑑𝜉 = −
𝑑𝑛𝐴

𝑎
= −

𝑑𝑛𝐵

𝑏
= ⋯ =

𝑑𝑛𝑅

𝑟
=

𝑑𝑛𝑆

𝑠
=

𝑑𝑛𝑖

𝜈𝑖
 that ∑ 𝜈𝑖

𝑖

𝜇𝑖 < 0. 

That is, 

∑(|𝜈𝑖|𝜇𝑖)reactants

𝑖

> ∑(|𝜈𝑖|𝜇𝑖)products

𝑖

 

Thus, for a spontaneous reaction, we can say that the sum of the escaping tendencies for the reactants is 
greater than the sum of the escaping tendencies for the products. 
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Mixtures of Ideal Gases 
We define an ideal gas on the basis of two properties: 

𝑃𝑉 = 𝑛𝑅𝑇 (equation of state) and (
𝜕𝑈

𝜕𝑉
)

𝑇
= 0 (no interaction) 

We define an ideal gas mixture as one that follows Dalton’s law: 

𝑃 = 𝑛1

𝑅𝑇

𝑉
+ 𝑛2

𝑅𝑇

𝑉
+ ⋯ =

𝑅𝑇

𝑉
∑ 𝑛𝑖

𝑖

 

Δ𝑆𝑚𝑖𝑥𝑖𝑛𝑔 =
𝑄𝑟𝑒𝑣

𝑇
= −𝑛𝐴𝑅 ln 𝑋𝐴 − 𝑛𝐵𝑅 ln 𝑋𝐵 = − ∑ 𝑛𝑖𝑅

𝑖

ln 𝑋𝑖  

As both 𝑋𝐴 and 𝑋𝐵 are less than 1, Δ𝑆mixing is a positive quantity. For the reversible mixing, the entropy 

change in the surroundings is equal, but opposite in sign, and the total entropy change is zero. If the mixing 
process were allowed to proceed irreversibly by puncturing the two pistons, Δ𝑆 for the system would be the 
same, but Δ𝑆 for the surroundings would be zero because no work would be performed and no heat would 
be exchanged. Thus, the total change in entropy for the irreversible process would be positive. Therefore, 

Δ𝐺𝑚𝑖𝑥𝑖𝑛𝑔 = 𝑛𝐴𝑅𝑇 ln 𝑋𝐴 + 𝑛𝐵𝑅𝑇 ln 𝑋𝐵 = ∑ 𝑛𝑖𝑅𝑇

𝑖

ln 𝑋𝑖  

 
The Chemical Potential of a Component in an Ideal Gas Mixture 
Δ𝐺𝑚𝑖𝑥𝑖𝑛𝑔 is also equal to the difference between the Gibbs free energies of the mixture and that of the pure 

gases (unmixed). Thus, 

Δ𝐺𝑚𝑖𝑥𝑖𝑛𝑔 = 𝐺𝑚𝑖𝑥𝑡𝑢𝑟𝑒 − 𝐺𝑝𝑢𝑟𝑒 𝑔𝑎𝑠𝑒𝑠 = [𝑛𝐴𝜇𝐴 + 𝑛𝐵𝜇𝐵]𝑚𝑖𝑥𝑡𝑢𝑟𝑒 − [𝑛𝐴�̅�𝐴
∗ + 𝑛𝐵�̅�𝐵

∗ ]𝑝𝑢𝑟𝑒 𝑔𝑎𝑠𝑒𝑠 

where any �̅�𝑖
∗ is molar free energy of the pure gas 𝑖. From (𝜕𝐺 𝜕𝑃⁄ )𝑇 = 𝑉 and 𝑃𝑉 = 𝑛𝑅𝑇 we can obtain for 

the change in Gibbs function in the isothermal expansion of an ideal gas:  

Δ𝐺 = 𝑛𝑅𝑇 ln
𝑃2

𝑃1
 

If the change in state is the expansion of one mole of an ideal gas from a standard pressure 𝑃0 = 0.1 MPa to 
a pressure 𝑃, then 

Δ𝐺 = �̅� − �̅�0 = 𝑅𝑇 ln(𝑃 𝑃0⁄ ) ⇒ �̅� = �̅�0 + 𝑅𝑇 ln(𝑃 𝑃0⁄ ) 
Substituting for �̅� from the above equation into the expression for Δ𝐺𝑚𝑖𝑥𝑖𝑛𝑔: 

Δ𝐺𝑚𝑖𝑥𝑖𝑛𝑔 = 𝑛𝐴𝜇𝐴 + 𝑛𝐵𝜇𝐵 − 𝑛𝐴[�̅�𝐴
0 + 𝑅𝑇 ln(𝑃 𝑃0⁄ )] − 𝑛𝐵[�̅�𝐵

0 + 𝑅𝑇 ln(𝑃 𝑃0⁄ )] 

From, Δ𝐺𝑚𝑖𝑥𝑖𝑛𝑔 = 𝑛𝐴𝑅𝑇 ln 𝑋𝐴 + 𝑛𝐵𝑅𝑇 ln 𝑋𝐵, and the last equation, 

𝑛𝐴𝑅𝑇 ln 𝑋𝐴 + 𝑛𝐵𝑅𝑇 ln 𝑋𝐵 = 𝑛𝐴𝜇𝐴 + 𝑛𝐵𝜇𝐵 − 𝑛𝐴[�̅�𝐴
0 + 𝑅𝑇 ln(𝑃 𝑃0⁄ )] − 𝑛𝐵[�̅�𝐵

0 + 𝑅𝑇 ln(𝑃 𝑃0⁄ )] 
The coefficients of 𝑛𝐴 and 𝑛𝐵 on the two sides of the above equation must be equal. Hence, 

𝑅𝑇 ln 𝑋𝐴 = 𝜇𝐴 − �̅�𝐴
0 − 𝑅𝑇 ln(𝑃 𝑃0⁄ ) 

∴ 𝜇𝐴 = �̅�𝐴
0 + 𝑅𝑇 ln 𝑋𝐴 + 𝑅𝑇 ln(𝑃 𝑃0⁄ ) = �̅�𝐴

0 + 𝑅𝑇 ln (
𝑃𝑋𝐴

𝑃0
) 

and, similarly for 𝜇𝐵. We shall define the partial pressure of an ideal gas as the product of the pressure of the 
gas and its mole fraction in the mixture. Thus, 𝑝𝐴 = 𝑃𝑋𝐴. Hence, 

𝜇𝐴 = �̅�𝐴
0 + 𝑅𝑇 ln (

𝑝𝐴

𝑃0
) 

We have seen that, Δ𝐺 = �̅� − �̅�0 = 𝑅𝑇 ln(𝑃 𝑃0⁄ ) which means that  
�̅� = �̅�0 + 𝑅𝑇 ln(𝑃 𝑃0⁄ ) 

This equation is of a form identical to the above expression for 𝜇𝐴, which gives the chemical potential of a 
component of an ideal gas mixture, except that for the latter, partial pressure is substituted for total pressure. 
If the standard state of a component of the mixture is defined as one in which the partial pressure of that 

component is 0.1 MPa, then 𝜇𝐴
0 = �̅�𝐴

0 and we can write 

𝜇𝐴 = 𝜇𝐴
0 + 𝑅𝑇 ln (

𝑝𝐴

𝑃0
) 

 
Chemical Equilibrium in Ideal Gas Mixtures 
Consider the reaction 

𝑎𝐴(𝑝𝐴) + 𝑏𝐵(𝑝𝐵) = 𝑟𝑅(𝑝𝑅) + 𝑠𝑆(𝑝𝑆) 
in which all reactants and products are in the same phase.  
We have already seen that at equilibrium, 
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Δ�̅� = �̅�2 − �̅�1 = ∫ (
𝜕𝐺

𝜕𝜉
)

𝑇,𝑃

𝑑𝜉
1

0

= ∑ 𝜈𝑖

𝑖

𝜇𝑖 = 0 

Therefore, for the above reaction, 
Δ�̅� = −𝑎𝜇𝐴 − 𝑏𝜇𝐵 + 𝑟𝜇𝑅 + 𝑠𝜇𝑆 

Using 𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 ln(𝑝𝑖 𝑃0⁄ ) in the above equation, 

Δ�̅� = −𝑎[𝜇𝐴
0 + 𝑅𝑇 ln(𝑝𝐴 𝑃0⁄ )] − 𝑏[𝜇𝐵

0 + 𝑅𝑇 ln(𝑝𝐵 𝑃0⁄ )] 
+𝑟[𝜇𝑅

0 + 𝑅𝑇 ln(𝑝𝑅 𝑃0⁄ )] + 𝑠[𝜇𝑆
0 + 𝑅𝑇 ln(𝑝𝑆 𝑃0⁄ )] = 0 

−𝑎𝜇𝐴
0 − 𝑏𝜇𝐵

0 + 𝑟𝜇𝑅
0 + 𝑠𝜇𝑆

0 = 𝑎𝑅𝑇 ln(𝑝𝐴 𝑃0⁄ ) + 𝑏𝑅𝑇 ln(𝑝𝐵 𝑃0⁄ ) − 𝑟𝑅𝑇 ln(𝑝𝑅 𝑃0⁄ ) − 𝑠𝑅𝑇 ln(𝑝𝑆 𝑃0⁄ ) 
−𝑎𝜇𝐴

0 − 𝑏𝜇𝐵
0 + 𝑟𝜇𝑅

0 + 𝑠𝜇𝑆
0 = 𝑅𝑇 ln(𝑝𝐴 𝑃0⁄ )𝑎 + 𝑅𝑇 ln(𝑝𝐵 𝑃0⁄ )𝑏 − 𝑅𝑇 ln(𝑝𝑅 𝑃0⁄ )𝑟 − 𝑅𝑇 ln(𝑝𝑆 𝑃0⁄ )𝑠 

We define: −𝑎𝜇𝐴
0 − 𝑏𝜇𝐵

0 + 𝑟𝜇𝑅
0 + 𝑠𝜇𝑆

0 = Δ�̅�0 

∴ Δ�̅�0 = −𝑅𝑇 ln [
(𝑝𝑅 𝑃0⁄ )𝑟(𝑝𝑆 𝑃0⁄ )𝑠

(𝑝𝐴 𝑃0⁄ )𝑎(𝑝𝐵 𝑃0⁄ )𝑏
]

equilibrium

 

As Δ�̅�0 is a constant at constant 𝑇, the quantity in brackets is also a constant at constant 𝑇, and, in particular, 
independent of the total pressure and the initial composition of the system. We define the equilibrium 
constant in terms of partial pressures for a mixture of ideal gases, as 

𝐾𝑃 = [
(𝑝𝑅 𝑃0⁄ )𝑟(𝑝𝑆 𝑃0⁄ )𝑠

(𝑝𝐴 𝑃0⁄ )𝑎(𝑝𝐵 𝑃0⁄ )𝑏
]

equilibrium

 

The last two leads us to, Δ�̅�0 = −𝑅𝑇 ln 𝐾𝑃. The subscript 𝑃 distinguishes the ideal gas equilibrium constant 
in terms of partial pressures from other forms for the constants that will be derived for real systems. 
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Chemical Equilibrium in Ideal Gas Mixtures 
Consider the reaction 

𝑎𝐴(𝑝𝐴) + 𝑏𝐵(𝑝𝐵) = 𝑟𝑅(𝑝𝑅) + 𝑠𝑆(𝑝𝑆) 
in which all reactants and products are in the same phase.  
We have already seen that at equilibrium, 

Δ�̅� = �̅�2 − �̅�1 = ∫ (
𝜕𝐺

𝜕𝜉
)

𝑇,𝑃

𝑑𝜉
1

0

= ∑ 𝜈𝑖

𝑖

𝜇𝑖 = 0 

Therefore, for the above reaction, 
Δ�̅� = −𝑎𝜇𝐴 − 𝑏𝜇𝐵 + 𝑟𝜇𝑅 + 𝑠𝜇𝑆 

Using 𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 ln(𝑝𝑖 𝑃0⁄ ) in the above equation, 

Δ�̅� = −𝑎[𝜇𝐴
0 + 𝑅𝑇 ln(𝑝𝐴 𝑃0⁄ )] − 𝑏[𝜇𝐵

0 + 𝑅𝑇 ln(𝑝𝐵 𝑃0⁄ )] 
+𝑟[𝜇𝑅

0 + 𝑅𝑇 ln(𝑝𝑅 𝑃0⁄ )] + 𝑠[𝜇𝑆
0 + 𝑅𝑇 ln(𝑝𝑆 𝑃0⁄ )] = 0 

−𝑎𝜇𝐴
0 − 𝑏𝜇𝐵

0 + 𝑟𝜇𝑅
0 + 𝑠𝜇𝑆

0 = 𝑎𝑅𝑇 ln(𝑝𝐴 𝑃0⁄ ) + 𝑏𝑅𝑇 ln(𝑝𝐵 𝑃0⁄ ) − 𝑟𝑅𝑇 ln(𝑝𝑅 𝑃0⁄ ) − 𝑠𝑅𝑇 ln(𝑝𝑆 𝑃0⁄ ) 
−𝑎𝜇𝐴

0 − 𝑏𝜇𝐵
0 + 𝑟𝜇𝑅

0 + 𝑠𝜇𝑆
0 = 𝑅𝑇 ln(𝑝𝐴 𝑃0⁄ )𝑎 + 𝑅𝑇 ln(𝑝𝐵 𝑃0⁄ )𝑏 − 𝑅𝑇 ln(𝑝𝑅 𝑃0⁄ )𝑟 − 𝑅𝑇 ln(𝑝𝑆 𝑃0⁄ )𝑠 

We define: −𝑎𝜇𝐴
0 − 𝑏𝜇𝐵

0 + 𝑟𝜇𝑅
0 + 𝑠𝜇𝑆

0 = Δ�̅�0 

∴ Δ�̅�0 = −𝑅𝑇 ln [
(𝑝𝑅 𝑃0⁄ )𝑟(𝑝𝑆 𝑃0⁄ )𝑠

(𝑝𝐴 𝑃0⁄ )𝑎(𝑝𝐵 𝑃0⁄ )𝑏
]

equilibrium

 

As Δ�̅�0 is a constant at constant 𝑇, the quantity in brackets is also a constant at constant 𝑇, and, in 
particular, independent of the total pressure and the initial composition of the system. We define the 
equilibrium constant in terms of partial pressures for a mixture of ideal gases, as 

𝐾𝑃 = [
(𝑝𝑅 𝑃0⁄ )𝑟(𝑝𝑆 𝑃0⁄ )𝑠

(𝑝𝐴 𝑃0⁄ )𝑎(𝑝𝐵 𝑃0⁄ )𝑏
]

equilibrium

 

The last two leads us to, Δ�̅�0 = −𝑅𝑇 ln 𝐾𝑃. The subscript 𝑃 distinguishes the ideal gas equilibrium 
constant in terms of partial pressures from other forms for the constants that will be derived for real 
systems. Now, if we think of a situation that is not in equilibrium, then,  

Δ�̅� = −𝑎[𝜇𝐴
0 + 𝑅𝑇 ln(𝑝𝐴 𝑃0⁄ )] − 𝑏[𝜇𝐵

0 + 𝑅𝑇 ln(𝑝𝐵 𝑃0⁄ )] 
+𝑟[𝜇𝑅

0 + 𝑅𝑇 ln(𝑝𝑅 𝑃0⁄ )] + 𝑠[𝜇𝑆
0 + 𝑅𝑇 ln(𝑝𝑆 𝑃0⁄ )] 

and since the system is not at equilibrium, the RHS≠ 0. 

∴ Δ�̅� = (𝑟𝜇𝑅
0 + 𝑠𝜇𝑆

0 − 𝑎𝜇𝐴
0 − 𝑏𝜇𝐵

0 ) + 𝑅𝑇 ln [
(𝑝𝑅 𝑃0⁄ )𝑟(𝑝𝑆 𝑃0⁄ )𝑠

(𝑝𝐴 𝑃0⁄ )𝑎(𝑝𝐵 𝑃0⁄ )𝑏
]

not at equilibrium

 

or,   Δ�̅� = Δ�̅�0 + 𝑅𝑇 ln [
(𝑝𝑅 𝑃0⁄ )𝑟(𝑝𝑆 𝑃0⁄ )𝑠

(𝑝𝐴 𝑃0⁄ )𝑎(𝑝𝐵 𝑃0⁄ )𝑏
]

not at equilibrium

= Δ�̅�0 + 𝑅𝑇 ln 𝑄∗ 

where, 𝑄∗ for the quotient of pressures not at equilibrium, that is, 

𝑄∗ = [
(𝑝𝑅 𝑃0⁄ )𝑟(𝑝𝑆 𝑃0⁄ )𝑠

(𝑝𝐴 𝑃0⁄ )𝑎(𝑝𝐵 𝑃0⁄ )𝑏
]

not at equilibrium

 

∴ Δ�̅� = Δ�̅�0 + 𝑅𝑇 ln 𝑄∗ = −𝑅𝑇 ln 𝐾𝑃 + 𝑅𝑇 ln 𝑄∗ = 𝑅𝑇 ln(𝑄∗ 𝐾𝑃⁄ ) 
Thus, if the initial quotient of pressures is greater than 𝐾𝑃, Δ𝐺m is positive and the reaction will be 
spontaneous to the left. Whereas if the initial quotient of pressures is less than 𝐾𝑃, Δ𝐺m is negative 
and the reaction will be spontaneous to the right. Now, from 

𝐾𝑃 = [
(𝑝𝑅 𝑃0⁄ )𝑟(𝑝𝑆 𝑃0⁄ )𝑠

(𝑝𝐴 𝑃0⁄ )𝑎(𝑝𝐵 𝑃0⁄ )𝑏
]

equilibrium

 

we conclude that: 
1. The equilibrium constant, 𝐾𝑃 is a dimensionless quantity, and 
2. Also, that 𝐾𝑃 depends on the choice of standard state, but not on the units used to describe 

the standard state pressure. 

The equilibrium constant has the same value whether 𝑃° is expressed as 750.062 Torr, 0.98692 atm, 
0.1 MPa, or 1 bar.  
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How does the equilibrium constant 𝑲𝑷 depend on 𝑻? 
We have seen that 

Δ�̅�0 = −𝑅𝑇 ln 𝐾𝑃 
and, also 

Δ�̅�0 = Δ�̅�0 − 𝑇Δ𝑆̅0 
Therefore,  

−𝑅𝑇 ln 𝐾𝑃 = Δ�̅�0 − 𝑇Δ𝑆̅0 
so that, 

ln 𝐾𝑃 = (−
Δ�̅�0

𝑅
)

1

𝑇
+

Δ𝑆̅0

𝑅
 

A plot of ln 𝐾𝑃 (along 𝑌 axis) against 1 𝑇⁄  (along 𝑋 axis) will give a straight line with a slope of 
(− Δ�̅�0 𝑅⁄ ) and a 𝑌 intercept of Δ𝑆̅0 𝑅⁄ . From the Gibbs-Helmholtz relation, 

[
𝜕(Δ�̅�0 𝑇⁄ )

𝜕𝑇
]

𝑃

= −
Δ�̅�0

𝑇2
 

so that, 
𝑑

𝑑𝑇
[
Δ�̅�0

𝑇
]

𝑃

= −
Δ�̅�0

𝑇2
 

since both 𝐾𝑃 and Δ�̅�0 are independent of 𝑃. Therefore, from 
Δ�̅�0 = −𝑅𝑇 ln 𝐾𝑃 

we can write, 
𝑑

𝑑𝑇
[−

𝑅𝑇 ln 𝐾𝑃

𝑇
]

𝑃
= −

Δ�̅�0

𝑇2
 

∴
𝑑 ln 𝐾𝑃

𝑑𝑇
=

Δ�̅�0

𝑅𝑇2
⇒ {

𝑑 ln 𝐾𝑃

𝑑(1 𝑇⁄ )
} = −

Δ�̅�0

𝑅
 

This equation is known as van’t Hoff equation. For an endothermic reaction, Δ�̅�0 > 0, and the RHS is 
positive, so that ln 𝐾𝑃 (and also 𝐾𝑃) increases with increase in temperature. For an exothermic 
reaction, Δ�̅�0 < 0, and the RHS is negative, so that ln 𝐾𝑃 (and also 𝐾𝑃) decreases with increase in 
temperature.  
 
THE FUGACITY FUNCTION OF A PURE REAL GAS 
We have expressed the molar free energy of an idea gas as  

�̅� = �̅�0 + 𝑅𝑇 ln 𝑃 𝑃0 ⁄  
using the ideal gas equation of state 𝑉 = 𝑛𝑅𝑇 𝑃⁄  and the standard relation (𝜕𝐺 𝜕𝑃⁄ )𝑇 = 𝑉 by solving 
the integral 

Δ𝐺 = ∫ 𝑉𝑑𝑃 =

𝑃

𝑃°

∫
𝑛𝑅𝑇

𝑃

𝑃

𝑃°

𝑑𝑃 

Similarly, we obtained the chemical potential of a component of an ideal gas mixture as 

𝜇𝐴 = 𝜇𝐴
0 + 𝑅𝑇 ln 𝑝𝐴 𝑃0⁄  

from an analysis of the van’t Hoff mixing experiment, using the same integral. Is it possible to obtain 
similar expressions for systems of real gases? G. N. Lewis: Defined a new function, the fugacity 𝑓, with 
a universal relationship to the chemical potential, and let the dependence of 𝑓 on 𝑃 vary for different 
gases. The fugacity is defined to have the dimensions of pressure. An advantage of the 𝑓 over 𝜇 as a 
measure of escaping tendency is that an absolute value of the fugacity can be calculated, whereas an 
absolute value of the chemical potential cannot be calculated. One part of the definition of fugacity 
can be stated as 

𝜇 = 𝜇0 + 𝑅𝑇 ln(𝑓 𝑓0⁄ ) 
in which 𝜇0 is a function of 𝑇 only, that is, 𝜇0 = 𝜇0(𝑇). The standard chemical potential is characteristic 
of each gas and the standard state chosen. For a pure gas, the value of 𝑓0 is chosen equal to 𝑃0, 0.1 
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MPa. As all gases approach ideality as their pressure is decreased, and as the above equation is of the 
same form as the one for an ideal gas, it is convenient to complete the definition of 𝑓 by stating that, 

lim
𝑃→0

𝑓 𝑃⁄ = 1 

That is, as the pressure approaches zero, the fugacity approaches the pressure. 

 
The standard state for a real gas is chosen as the state at which the 𝑓 is equal to 0.1 MPa, 1 bar, along 
a line extrapolated from values of 𝑓 at low pressure. The standard state for a real gas is then a 
hypothetical 0.1 MPa standard state. Therefore, from 𝜇 = 𝜇0 + 𝑅𝑇 ln(𝑓 𝑓0⁄ ), we can see that the 
change in the Gibbs function for the isothermal expansion of a real gas is,  

Δ𝐺 = 𝑛𝑅𝑇 ln(𝑓2 𝑓1⁄ ). 
As the pressure approaches zero, lim

𝑃→0
𝑓 𝑃⁄ = 1 applies, and Δ𝐺 approaches the value calculated from 

Δ𝐺 = 𝑛𝑅𝑇 ln(𝑃2 𝑃1⁄ ). Therefore, from Δ𝐺 = 𝑛𝑅𝑇 ln(𝑓2 𝑓1⁄ ), which for one mole may be expressed as 

𝑑�̅� = 𝑅𝑇𝑑 ln 𝑓, and  

(
𝜕𝜇𝑖

𝜕𝑃
)

𝑇
= (

𝜕�̅�𝑖

𝜕𝑃
)

𝑇

= �̅�𝑖,  

we can write, 

(
𝜕 ln 𝑓

𝜕𝑃
)

𝑇
=

�̅�

𝑅𝑇
 

since 𝑓0 is independent of 𝑃. 
 
Change of Fugacity with Temperature 
Let us consider an isothermal process in which a gas is transformed form one state 𝐴 at a pressure 𝑃 
to another 𝐴∗ at a different pressure 𝑃∗. Such a transformation can be represented as follows: 

𝐴(𝑃) = 𝐴∗(𝑃∗) 
The change in the Gibbs function for such a transformation is given by the expression 

Δ𝐺𝑚 = 𝜇∗ − 𝜇 = 𝑅𝑇 ln(𝑓∗ 𝑓°⁄ ) − 𝑅𝑇 ln(𝑓 𝑓°⁄ ) = 𝑅𝑇 ln(𝑓∗ 𝑓⁄ ) 

so that 
𝜇∗

𝑇
−

𝜇

𝑇
= 𝑅 ln(𝑓∗ 𝑓⁄ ) 
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Change of Fugacity with Temperature 
Let us consider an isothermal process in which a gas is transformed form one state 𝐴 at a pressure 𝑃 to another 𝐴∗ 
at a different pressure 𝑃∗. Such a transformation can be represented as follows: 

𝐴(𝑃) = 𝐴∗(𝑃∗) 
The change in the Gibbs function for such a transformation is given by the expression 

Δ𝐺𝑚 = 𝜇∗ − 𝜇 = 𝑅𝑇 ln(𝑓∗ 𝑓°⁄ ) − 𝑅𝑇 ln(𝑓 𝑓°⁄ ) = 𝑅𝑇 ln(𝑓∗ 𝑓⁄ ) 

so that 
𝜇∗

𝑇
−
𝜇

𝑇
= 𝑅 ln(𝑓∗ 𝑓⁄ ) 

The partial derivative of the fugacity with respect to temperature is given by 

[
𝜕(𝜇∗ 𝑇⁄ )

𝜕𝑇
]
𝑃∗
− [

𝜕(𝜇 𝑇⁄ )

𝜕𝑇
]
𝑃

= 𝑅 (
𝜕 ln 𝑓∗

𝜕𝑇
)
𝑃∗
− 𝑅 (

𝜕 ln 𝑓

𝜕𝑇
)
𝑃

 

Now, we know that 

𝐺m = 𝐻m − 𝑇𝑆m ⇒ 𝜇 = 𝐻m − 𝑇𝑆m ⇒
𝜇

𝑇
=
𝐻m

𝑇
− 𝑆m 

Now, since, (𝜕𝐺 𝜕𝑇⁄ )𝑃 = −𝑆 ⇒ (𝜕𝜇 𝜕𝑇⁄ )𝑃 = −𝑆m 

∴
𝜇

𝑇
=
𝐻m

𝑇
+ (

𝜕𝜇

𝜕𝑇
)
𝑃
⇒ (

𝜕𝜇

𝜕𝑇
)
𝑃
−
𝜇

𝑇
= −

𝐻m

𝑇
 

1

𝑇
(
𝜕𝜇

𝜕𝑇
)
𝑃
−

𝜇

𝑇2
= −

𝐻m

𝑇2
⇒ [

𝜕(𝜇 𝑇⁄ )

𝜕𝑇
]
𝑃

= −
𝐻m

𝑇2
 

Therefore, from 

[
𝜕(𝜇∗ 𝑇⁄ )

𝜕𝑇
]
𝑃∗
− [

𝜕(𝜇 𝑇⁄ )

𝜕𝑇
]
𝑃

= 𝑅 (
𝜕 ln 𝑓∗

𝜕𝑇
)
𝑃∗
− 𝑅 (

𝜕 ln 𝑓

𝜕𝑇
)
𝑃

 

and 

[
𝜕(𝜇 𝑇⁄ )

𝜕𝑇
]
𝑃

= −
𝐻m

𝑇2
 

we have, 

[
𝜕(𝜇∗ 𝑇⁄ )

𝜕𝑇
]
𝑃∗
− [

𝜕(𝜇 𝑇⁄ )

𝜕𝑇
]
𝑃

= −
𝐻m
∗

𝑇2
+
𝐻m

𝑇2
 

∴ (
𝜕 ln 𝑓∗

𝜕𝑇
)
𝑃∗
− (

𝜕 ln 𝑓

𝜕𝑇
)
𝑃
= −

𝐻m
∗

𝑅𝑇2
+

𝐻m

𝑅𝑇2
 

If the pressure 𝑃∗ approaches zero, the ratio of the fugacity to the pressure approaches one, and we can write 

(
𝜕 ln 𝑓∗

𝜕𝑇
)
𝑃∗

= (
𝜕 ln𝑃∗

𝜕𝑇
)
𝑃∗

= 0 

Therefore, from 

∴ (
𝜕 ln 𝑓∗

𝜕𝑇
)
𝑃∗
− (

𝜕 ln 𝑓

𝜕𝑇
)
𝑃
= −

𝐻m
∗

𝑅𝑇2
+

𝐻m

𝑅𝑇2
 

and  

(
𝜕 ln 𝑓∗

𝜕𝑇
)
𝑃∗

= (
𝜕 ln𝑃∗

𝜕𝑇
)
𝑃∗

= 0 

we can write, 

(
𝜕 ln 𝑓

𝜕𝑇
)
𝑃
=
𝐻m
∗ −𝐻m

𝑅𝑇2
 

in which 𝐻m
∗   is the partial molar enthalpy of the substance in State 𝐴∗, that is, the state of zero pressure. Therefore, 

the difference (𝐻m
∗ −𝐻m) is the change in molar enthalpy when the gas goes from State 𝐴 to its state of zero 

pressure, that is, at infinite volume. The pressure dependence of this enthalpy change is given by the expression 



UG SEMESTER-III 2023 THERMODYNAMICS OF OPEN SYSTEMS 22/01/2024 

[
𝜕(𝐻m

∗ −𝐻m)

𝜕𝑃
]
𝑇

= −(
𝜕𝐻m

𝜕𝑃
)
𝑇

 

because, (𝜕𝐻m
∗ 𝜕𝑃⁄ )𝑇 = 0, as 𝐻m

∗  is the partial molar enthalpy at a fixed (zero) pressure. (𝜕𝐻m 𝜕𝑃⁄ )𝑇 is called the 
pressure coefficient of molar enthalpy. We know, from the Joule-Thomson (JT) effect, that the pressure coefficient 
of molar enthalpy, (𝜕𝐻m 𝜕𝑃⁄ )𝑇, is related to the JT coefficient, 𝜇𝐽𝑇 by the relation 

(
𝜕𝐻m

𝜕𝑃
)
𝑇
= −𝐶𝑃m𝜇𝐽𝑇 

Therefore, combining 

[
𝜕(𝐻m

∗ −𝐻m)

𝜕𝑃
]
𝑇

= −(
𝜕𝐻m

𝜕𝑃
)
𝑇
and (

𝜕𝐻m

𝜕𝑃
)
𝑇
= −𝐶𝑃m𝜇𝐽𝑇 

we get, 

[
𝜕(𝐻m

∗ −𝐻m)

𝜕𝑃
]
𝑇

= 𝐶𝑃m𝜇𝐽𝑇 . 

Because of this relationship between (𝐻m
∗ −𝐻m) and 𝜇𝐽𝑇, the former quantity frequently is referred to as the Joule-

Thomson enthalpy. The pressure coefficient of this JT enthalpy change can be calculated from the known values of 
the JT coefficient and the heat capacity of the gas. Similarly, as (𝐻m

∗ −𝐻m) is a derived function of the fugacity, 
knowledge of the temperature dependence of the latter can be used to calculate the JT coefficient. As the fugacity 
and the JT coefficient are both measures of the deviation of a gas from ideality, it is not surprising that they are 
related. 
 
A quick recap of some results for a system of van der Waals gas: 
From the definition of Helmholtz free energy, the total infinitesimal change in it is 𝑑𝐴 = −𝑃𝑑𝑉 − 𝑆𝑑𝑇, so that 
(𝜕𝐴 𝜕𝑉⁄ )𝑇 = −𝑃 ⇒ 𝑑𝐴 = −𝑃𝑑𝑉 (𝑇 constant). For a system of 𝑛 moles of a van der Waals gas, we have 

𝑑𝐴 = −(
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
−
𝑛2𝑎

𝑉2 )𝑑𝑉 

∴ Δ𝐴 = − ∫
𝑛𝑅𝑇

𝑉 − 𝑛𝑏

𝑉2

𝑉1

𝑑𝑉 + ∫
𝑛2𝑎

𝑉2

𝑉2

𝑉1

𝑑𝑉 = −𝑛𝑅𝑇 ln
𝑉2 − 𝑛𝑏

𝑉1 − 𝑛𝑏
− 𝑛2𝑎 (

1

𝑉2
−

1

𝑉1
) 

From the definition of Gibbs free energy, the total infinitesimal change in it is 𝑑𝐺 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇 , so that 
(𝜕𝐺 𝜕𝑃⁄ )𝑇 = 𝑉 ⇒ 𝑑𝐺 = 𝑉𝑑𝑃 (𝑇 constant). While evaluating the integral, it is convenient to replace 𝑑𝑃 in terms 
of 𝑑𝑉. The van der Waals equation of state is 

𝑃 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
−
𝑛2𝑎

𝑉2
⇒ 𝑑𝑃 = −

𝑛𝑅𝑇

(𝑉 − 𝑛𝑏)2
𝑑𝑉 +

2𝑛2𝑎

𝑉3
𝑑𝑉 

∴ 𝑉𝑑𝑃 = −
𝑛𝑅𝑇𝑉

(𝑉 − 𝑛𝑏)2
𝑑𝑉 +

2𝑛2𝑎

𝑉2
𝑑𝑉 

Therefore, 

Δ𝐺 = ∫ 𝑉𝑑𝑃

𝑉2

𝑉1

= −𝑛𝑅𝑇 ∫
𝑉

(𝑉 − 𝑛𝑏)2
𝑑𝑉

𝑉2

𝑉1

+ 2𝑛2𝑎 ∫
1

𝑉2
𝑑𝑉

𝑉2

𝑉1

 

or,  Δ𝐺 = −𝑛𝑅𝑇 ∫
𝑉 − 𝑛𝑏 + 𝑛𝑏

(𝑉 − 𝑛𝑏)2
𝑑𝑉

𝑉2

𝑉1

+ 2𝑛2𝑎 ∫
1

𝑉2
𝑑𝑉

𝑉2

𝑉1

 

or,  Δ𝐺 = −𝑛𝑅𝑇 ∫
1

𝑉 − 𝑛𝑏
𝑑𝑉

𝑉2

𝑉1

− 𝑛𝑅𝑇 ∫
𝑛𝑏

(𝑉 − 𝑛𝑏)2
𝑑𝑉

𝑉2

𝑉1

+ 2𝑛2𝑎 ∫
1

𝑉2
𝑑𝑉

𝑉2

𝑉1

 

∴ Δ𝐺 = −𝑛𝑅𝑇 ln
𝑉2 − 𝑛𝑏

𝑉1 − 𝑛𝑏
+ 𝑛2𝑏𝑅𝑇 (

1

𝑉2 − 𝑛𝑏
−

1

𝑉1 − 𝑛𝑏
) − 2𝑛2𝑎 (

1

𝑉2
−

1

𝑉1
) 

Therefore, we have determined the total changes in 𝐴 and 𝐺 for a system composed of 𝑛 moles of a van der Waals 
gas under an isothermal reversible expansion of the gas from 𝑉1 to 𝑉2. 
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We have seen from the definition of Gibbs free energy, the total infinitesimal change in it is 𝑑𝐺 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇 , so 
that (𝜕𝐺 𝜕𝑃⁄ )𝑇 = 𝑉 ⇒ 𝑑𝐺 = 𝑉𝑑𝑃 (𝑇 constant). Note that, the above form of 𝑑𝐺 is absolutely general and is 

applicable for all substances. Also, from 𝜇 = 𝜇° + 𝑅𝑇 ln(𝑓 𝑓°⁄ ), we can see that the change in the Gibbs function 

for the isothermal expansion of a real gas is,  
Δ𝐺 = 𝑛𝑅𝑇 ln(𝑓2 𝑓1⁄ ), 

which for a mole becomes, Δ𝜇 = 𝜇2 − 𝜇1 = 𝑛𝑅𝑇 ln(𝑓2 𝑓1⁄ ). Therefore, let us separately calculate Δ𝐺 for a mole of 
an ideal and a real gas, by noting that in general 

Δ𝐺m = ∫ 𝑉m𝑑𝑃

𝑃2

𝑃1

= Δ𝜇 

Thus, we have 

∫ 𝑉m,   ideal𝑑𝑃

𝑃2

𝑃1

= 𝜇𝑃2,   ideal − 𝜇𝑃1,   ideal = 𝑅𝑇 ln
𝑃2
𝑃1

 

and 

∫ 𝑉m,   real𝑑𝑃

𝑃2

𝑃1

= 𝜇𝑃2,   real − 𝜇𝑃1,   real = 𝑅𝑇 ln
𝑓2
𝑓1

 

Taking the difference, we have 

∫(𝑉m,   real − 𝑉m,   ideal)𝑑𝑃

𝑃2

𝑃1

= 𝑅𝑇 ln
𝑓2
𝑓1
− 𝑅𝑇 ln

𝑃2
𝑃1

 

so that, 

𝑅𝑇 ln (
𝑓2
𝑓1
)(

𝑃1
𝑃2
) = ∫(𝑉m,   real − 𝑉m,   ideal)𝑑𝑃

𝑃2

𝑃1

 

Let 𝑃1 be allowed to approach zero, so that, lim
𝑃1→0

𝑓1 𝑃1⁄ = 1, hence 

𝑅𝑇 ln (
𝑓2
𝑃2
) = ∫(𝑉m,   real − 𝑉m,   ideal)𝑑𝑃

𝑃2

0

 

Now, for a real gas, 

𝑉m,   real = 𝑍
𝑅𝑇

𝑃
= 𝑍𝑉m,   ideal 

where 𝑍 is the compressibility factor of the gas. Therefore, from 

𝑅𝑇 ln (
𝑓2
𝑃2
) = ∫(𝑉m,   real − 𝑉m,   ideal)𝑑𝑃

𝑃2

0

 

and, 

𝑉m,   real = 𝑍
𝑅𝑇

𝑃
= 𝑍𝑉m,   ideal 

we have, 

ln (
𝑓2
𝑃2
) = ∫

𝑍 − 1

𝑃
𝑑𝑃

𝑃2

0

 

The integral over 𝑃 in the above expression may be performed 
(a) if the data for 𝑍 (or 𝑉m) are available, or 
(b) if the analytical expression for 𝑍(𝑇, 𝑃) (or 𝑉m in terms of 𝑃) is available. 

In general, the value of 𝑓 depends upon the value of 𝑍. If 𝑍 is less than one, the RHS of the above equation will be 
negative and hence 𝑓2 will be smaller than 𝑃2. If 𝑍 is greater than one, the RHS of the above equation will be positive 
and hence 𝑓2 will be greater than 𝑃2. 
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Example 1 
Say we have an equation of state for a gas which is 𝑃(𝑉m − 𝑏) = 𝑅𝑇, and let us find out an expression for the 
fugacity, 𝑓, of this gas. Thus, for the given gas, 𝑉m = 𝑏 + (𝑅𝑇 𝑃⁄ ). Hence, 

𝑍 =
𝑃𝑉m
𝑅𝑇

=
𝑃

𝑅𝑇
(𝑏 +

𝑅𝑇

𝑃
) = 1 + 𝑏

𝑃

𝑅𝑇
⇒ 𝑍 − 1 = 𝑏

𝑃

𝑅𝑇
 

Therefore, we have, 

𝑍 − 1 = 𝑏
𝑃

𝑅𝑇
 

and  

ln (
𝑓

𝑃
) = ∫

𝑍 − 1

𝑃
𝑑𝑃

𝑃

0

= ∫
1

𝑃
𝑏
𝑃

𝑅𝑇
𝑑𝑃

𝑃

0

=
𝑏𝑃

𝑅𝑇
⇒

𝑓

𝑃
= exp (

𝑏𝑃

𝑅𝑇
) 

If 𝑏𝑃 𝑅𝑇⁄  is small, we may write, 

𝑓

𝑃
= exp (

𝑏𝑃

𝑅𝑇
) = 1 +

𝑏𝑃

𝑅𝑇
+
1

2!
(
𝑏𝑃

𝑅𝑇
)
2

+
1

3!
(
𝑏𝑃

𝑅𝑇
)
3

+⋯ ≈ 1 +
𝑏𝑃

𝑅𝑇
=
𝑅𝑇 + 𝑏𝑃

𝑅𝑇
 

From the given equation of state, we have, 𝑅𝑇 + 𝑏𝑃 = 𝑃𝑉m, and hence, 
𝑓

𝑃
= 𝑃 (

𝑉m
𝑅𝑇

) =
𝑃

𝑃ideal
 

Therefore,  

𝑃2 = 𝑓𝑃ideal ⇒ 𝑃 = √𝑓𝑃ideal 

That is, the pressure of the gas is the geometric mean of the ideal pressure and fugacity. [Recall that the geometric 

mean, 𝐺𝑀 of 𝑛 numbers, 𝑎1,  𝑎2,  𝑎3,  ⋯,  𝑎𝑛 is 𝐺𝑀 = √𝑎1 ⋅  𝑎2 ⋅  𝑎3 ⋅ ⋯ ⋅ 𝑎𝑛
𝑛 ] 

 
Example 2  
Given a situation where we have an expression for the fugacity, 𝑓, of a certain real gas. Say, it is given that, 

𝑓 = 𝑃 + 𝛼𝑃2, 
where 𝛼 is a function of 𝑇 only, that is, 𝛼 = 𝛼(𝑇). Can we find out the equation of state for the gas? Yes, we can, 
and let us do it. Given that, 

𝑓 = 𝑃 + 𝛼𝑃2 ⇒
𝑓

𝑃
= 1 + 𝛼𝑃 ⇒ ln

𝑓

𝑃
= ln(1 + 𝛼𝑃) 

Since,  

ln (
𝑓

𝑃
) = ∫

𝑍 − 1

𝑃
𝑑𝑃

𝑃

0

,we have, ln(1 + 𝛼𝑃) = ∫
𝑍 − 1

𝑃
𝑑𝑃

𝑃

0

 

Now, 

ln(1 + 𝛼𝑃) = ∫
𝛼

1 + 𝛼𝑃
𝑑𝑃

𝑃

0

,  so that,∫
𝛼

1 + 𝛼𝑃
𝑑𝑃

𝑃

0

= ∫
𝑍 − 1

𝑃
𝑑𝑃

𝑃

0

 

∴
𝛼

1 + 𝛼𝑃
=
𝑍 − 1

𝑃
 

From, 
𝛼

1 + 𝛼𝑃
=
𝑍 − 1

𝑃
 

we rewrite as, 
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𝛼

1 + 𝛼𝑃
=
(𝑉m 𝑉m, ideal⁄ ) − 1

𝑃
=
(𝑉m𝑃 𝑅𝑇⁄ ) − 1

𝑃
 

Therefore, 
𝑃𝑉m
𝑅𝑇

= 1 +
𝛼𝑃

1 + 𝛼𝑃
 

is the desired equation of state for the gas whose fugacity is given by 𝑓 = 𝑃 + 𝛼𝑃2. 
 
 
Thermodynamics of Solutions: The Concept of Ideal Solutions 
A solution is a homogeneous mixture of chemical species dispersed on a molecular scale. By this definition, a 
solution is a single phase. A solution may be gaseous, liquid, or solid. Binary solutions are composed of two 
constituents, ternary solutions three, quaternary four. The constituent present in the greatest amount is ordinarily 
called the solvent, while those constituents – one or more – present in relatively small amounts are called the 
solutes. The distinction between solvent and solute is an arbitrary one. We shall employ the words solvent and 
solute in the ordinary way, realizing that nothing fundamental distinguishes them. 
 
Types of solution: 

• Gaseous solutions: Mixtures of gases or vapors 
• Liquid solutions: Solids, liquids, or gases, dissolved in liquids 
• Solid solutions:  

 Gases dissolved in solids: 𝐻2 in palladium, 𝑁2 in titanium 
 Liquids dissolved in solids: Mercury in gold 
 Solids dissolved in solids: Copper in gold, zinc in copper (brasses) 
The ideal gas law is an important example of a limiting law. As the pressure approaches zero, the behavior of any 
real gas approaches that of the ideal gas as a limit. Thus, all real gases behave ideally at zero pressure, and for 
practical purposes they are ideal at low finite pressures. From this generalization of experimental behavior, the ideal 
gas is defined as one that behaves ideally at any pressure. We arrive at a similar limiting law from observing the 
behavior of solutions. 
 
For simplicity, we consider a solution composed of a volatile solvent and one or more involatile solutes, and examine 
the equilibrium between the solution and the vapor. If a pure liquid is placed in a container that is initially evacuated, 
the liquid evaporates until the space above the liquid is filled with vapor. The temperature of the system is kept 
constant. At equilibrium, the pressure established in the vapor is 𝑝°, the vapor pressure of the pure liquid. If an 
involatile material is dissolved in the liquid, the equilibrium vapor pressure 𝑝 over the solution is observed to be 
less than over the pure liquid. 

   
Since the solute is involatile, the vapor consists of pure solvent. As more involatile material is added, the pressure 
in the vapor phase decreases. A schematic plot of the vapor pressure of the solvent against the mole fraction of the 
involatile solute in the solution, 𝑥2 is shown on the right. At 𝑥2 = 0, 𝑝 = 𝑝°; as 𝑥2 increases, 𝑝 decreases. 
 
The important feature of the plot is that the vapor pressure of the dilute solution (𝑥2 near zero) approaches the 
dashed line connecting 𝑝° and zero. Depending on the particular combination of solvent and solute, the 
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experimental vapor-pressure curve at higher concentrations of solute may fall below the dashed line, or above it, 
or even lie exactly on it. However, for all solutions the experimental curve is tangent to the dashed line at 𝑥2 = 0, 
and approaches the dashed line very closely as the solution becomes more and more dilute. 
 
The equation of the ideal (dashed) line is 

𝑝 = 𝑝° − 𝑝°𝑥2 = 𝑝°(1 − 𝑥2) 
If 𝑥 is the mole fraction of solvent in the solution, then 𝑥 + 𝑥2 = 1, and the equation becomes, 

𝑝 = 𝑥𝑝° 
which is Raoult's law. It states that the vapor pressure of the solvent over a solution is equal to the vapor pressure 
of the pure solvent multiplied by the mole fraction of the solvent in the solution. Raoult's law is another example of 
a limiting law. Real solutions follow Raoult's law more closely as the solution becomes more dilute. The ideal solution 
is defined as one that follows Raoult's law over the entire range of concentrations. All real solutions behave ideally 
as the concentration of the solutes approaches zero. 

 
From 𝑝 = 𝑥𝑝°, the vapor pressure lowering, 𝑝° − 𝑝, can be calculated, 

𝑝° − 𝑝 = 𝑝° − 𝑥𝑝° = (1 − 𝑥)𝑝° ⇒ 𝑝° − 𝑝 = 𝑥2𝑝° 
The vapor pressure lowering is proportional to the mole fraction of the solute. If several solutes, 2,3, …, are present, 
then it is still true that 𝑝 = 𝑥𝑝°; but, in this case, 1 − 𝑥 = 𝑥2 + 𝑥3 +⋯ and 

𝑝° − 𝑝 = (𝑥2 + 𝑥3 +⋯)𝑝°. 
In a solution containing several involatile solutes, the vapor pressure lowering depends on the sum of the mole 
fractions of the various solutes. Note particularly that it does not depend on the kinds of solutes present, except 
that they be involatile. The vapor pressure depends only on the relative numbers of solute molecules. As a 
generalization of the behavior of real solutions the ideal solution follows Raoult's law over the entire range of 
concentration. Taking this definition of an ideal liquid solution and combining it with the general equilibrium 
condition leads to the analytical expression of the chemical potential of the solvent in an ideal solution. If the 
solution is in equilibrium with vapor, the requirement of the second law is that the chemical potential of the solvent 
have the same value in the solution as in the vapor, or  

𝜇𝑙𝑖𝑞 = 𝜇𝑣𝑎𝑝 

where 𝜇𝑙𝑖𝑞 is the chemical potential of the solvent in the liquid phase, 𝜇𝑣𝑎𝑝 the chemical potential of the solvent in 

the vapor. Since the vapor is pure solvent under a pressure 𝑝, the expression for 𝜇𝑣𝑎𝑝 is given by 𝜇𝑣𝑎𝑝 = 𝜇𝑣𝑎𝑝
∘ +

𝑅𝑇 ln 𝑝. Then, 
𝜇𝑙𝑖𝑞 = 𝜇𝑣𝑎𝑝

∘ + 𝑅𝑇 ln𝑝 

Using Raoult's law, 𝑝 = 𝑥𝑝°, in this equation and expanding the logarithm, we obtain  
𝜇𝑙𝑖𝑞 = 𝜇𝑣𝑎𝑝

∘ + 𝑅𝑇 ln 𝑝°  + 𝑅𝑇 ln 𝑥 

If pure solvent were in equilibrium with vapor, the pressure would be 𝑝° ; the equilibrium condition is 
𝜇𝑙𝑖𝑞
∘ = 𝜇𝑣𝑎𝑝

∘ + 𝑅𝑇 ln 𝑝° 

where 𝜇𝑙𝑖𝑞
∘  signifies the chemical potential of the pure liquid solvent. Subtracting this equation from the preceding 

one, we obtain 𝜇𝑙𝑖𝑞 = 𝜇𝑙𝑖𝑞
∘ + 𝑅𝑇 ln 𝑥. In this equation, nothing pertaining to the vapor phase appears; omitting the 

subscript 𝑙𝑖𝑞, the equation becomes 
𝜇 = 𝜇° + 𝑅𝑇 ln 𝑥 

𝜇 is the chemical potential of the solvent in the solution, 𝜇° is the chemical potential of the pure liquid solvent, a 
function of 𝑇 and 𝑝, and 𝑥 is the mole fraction of solvent in the solution. 
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