b) Applications of Thermodynamics — I (25 Lectures)

Partial properties and Chemical potential: Chemical potential and activity. partial molar
quantities. relation between Chemical potential and Gibb's free energy and other
thermodynamic state functions: variation of Chemical potential (jt) with temperature and
pressure; Gibbs-Duhem equation: fugacity and fugacity coefficient: Variation of
thermodynamic functions for systems with variable composition: Equations of states for these
systems, Change in G. S H and V during mixing for binary solutions

Chemical Equilibrium: Thermodynamic conditions for equilibrium. degree of advancement:
van't Hoff's reaction isotherm (deduction from chemical potential): Variation of free energy
with degree of advancement: Equilibrium constant and standard Gibbs free energy change:
Definitions of Kp. K¢ and Kx: van't Hoff's reaction isobar and isochore from different
standard states: Shifting of equilibrium due to change in external parameters e.g. temperature
and pressure: variation of equilibrium constant with addition to inert gas: Le Chatelier's
principle and its derivation

Nernst’s distribution law: Application- (finding out Keq using Nermst dist law for KI+I, = KI3
and dimerization of benzene

Chemical potential and other properties of ideal substances- pure and mixtures: a) Pure ideal
gas-its Chemical potential and other thermodynamic functions and their changes during a
change of: Thermodynamic parameters of mixing: Chemical potential of an ideal gas in an
ideal gas mixture: Concept of standard states and choice of standard states of ideal gases

b) Condensed Phase — Chemical potential of pure solid and pure liquids. Ideal solution —
Definition. Raoult’s law: Mixing properties of ideal solutions. chemical potential of a
component in an ideal solution: Choice of standard states of solids and liquids

Conductance and transport number: Ion conductance; Conductance and measurement of

conductance, cell constant, specific conductance and molar conductance; Variation of
specific and equivalent conductance with dilution for strong and weak electrolytes;
Kohlrausch's law of independent migration of ions; Equivalent and molar conductance at
mfinite dilution and their determination for strong and weak electrolytes; Debye —Huckel
theory of Ion atmosphere (qualitative)-asymmetric effect, relaxation effect and
electrophoretic effect; Ostwald's dilution law; Ionic mobility; Application of conductance
measurement (determination of solubility product and ionic product of water);
Conductometric titrations

Transport number, Principles of Hittorf’s and Moving-boundary method; Wien effect, Debye-
Falkenhagen effect, Walden’s rule




THERMODYNAMICS OF
OPEN SYSTEMS

CLASS-1



Many equations we have learnt so far can be applied only to closed
systems of constant composition.

This limitation simply means that we have been dealing with a special
case.

To fix the state of a system, the values of two independent variables
and the mole numbers of the components must be fixed.

We have been able to neglect the mole numbers of the components
so far because we have studied only closed systems of fixed
composition.

Now we will extend our discussion to the more general systems
where the system’s composition is free to change.



For a closed system of fixed composition, the extensive thermodynamic
properties such as V, U, S, 4, and G are functions of any pair of
convenient independent variables.

For example:
dG = VdP — SdT

suggests that G is a natural function of T and P. Thatis G = f(T,P). The
total differential of ¢ would be

0G 0G
dG = | - dT + | - dP
JdT ] » OoP ) ,

= —=S(T, P)dT + V(T, P)dP

When the composition of a system varies, the mole numbers of the
components are additional independent variables and we have

G=f(T,P,n,n,..., ni, ...)



G=f(T,P,n,n,..., ni, ...)

Therefore, the total differential of G becomes

G G )G
iG = () ar+ () ap+ Z ( dn;
T P.n; oP T.n; all ()”f I'.P.n;

components

The partial derivative (0G /ani)T,P,nj1 iIn which i # j, represents the rate

of increase Iin the Gibbs function of the system per mole of component i
added to the system when T, P, and the other mole numbers are held
constant.

The summation is over all components of the system.
If the composition is constant, so that the dn; terms are all zero,

5 G G
i — (29 ar o (%S P+ (¢ dn;
oT P OP T .n; all (_)?’If T'.P.n;
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1G = dP
4G = (()T) 4T (0 )
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dG = (7)) ar+ (20) dp+ > (¢ dn;
()T P.n; OP T .n; all ()”i T.P.n;

components
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Here we recognize explicitly that S and V also are functions of the mole numbers as well as functions of T
and P. The partial derivative of G with respect to the mole number n; at constant T and P and mole numbers

n; # n; is defined as
(é)G)
- =M
()l’f,' T.Pn;

dG = =SdT + VdP + )~ pdn;

all
components

We can write

where y; is the chemical potential.

The Helmholtz free energy
A=G—-PV
Therefore
dA = dG — PdV — VdP

dA = —PdV —SdT + _ wdn;
all
components

Therefore, the chemical potential for the component i may also be defined as

((’?A)
Ki = | 3
Onf V.

Similarly, we can show from other commonly used thermodynamic relationships that

U - (0H 1 [0S
i (0”1)5_\/_”[ M (f)’7i>s.P.;:, T (0”1) UV
~(0G ~ [0A ~[oUu
o ((.)’Ef)}'.f’.wr_, i (E) T,V e (0”1) SV,

W OH 1 /o8
1 On; S.P.n; BT On; UV

Because most chemical, biological, and geological processes occur at constant temperature and pressure, it
is convenient to provide a special name for the partial derivatives of all thermodynamic properties with
respect to mole number at constant pressure and temperature. They are called partial molar properties, and

they are defined by the relationship
oJ
Jni = (_)
()ni T.Pnjg;

where ] is any thermodynamic property. The partial molar Gibbs function is the chemical potential. However,
the following derivatives are partial molar properties, but they are not chemical potentials:

I.P.n;

on;

OH g
(é)f?i)l'.P.aa_j — Hmr # M

ou — 7.
((T”) TPy - Umr # i

(()_S) - Smf = _%
T.P.n

01’&' i /



because chemical potentials are derivatives with respect to the mole numbers with the natural independent
variables held constant.

CRITERIA OF EQUILIBRIUM AND SPONTANEITY IN SYSTEMS OF VARIABLE COMPOSITION
For systems having a fixed composition (closed systems) we already know that
dA <0 (constant 7', V) dG < O (constant T, P)
These relations are valid for all closed systems in which only PdV work is performed. Similarly,
dG < OW, (constant T, P)
is valid for all closed systems in which work other than pressure-volume work is performed. In this expression,
the equality applies to a reversible process and the inequality applies to an irreversible process, whether the
change of state is spontaneous or non-spontaneous.

If the change is spontaneous, dG < 0 (that is, dG is negative), and W o < O (that is, W}t is negative), so
that in absolute magnitude, |dG| = [0W,etl-

If the change of state is non-spontaneous, dG > 0 (that is, dG is positive), and 0W,o; > 0 (that is,0W, e is
positive), so that in absolute magnitude, |dG| < |0Wpetl.

Thus, for a spontaneous change of state, the magnitude of dG is equal to the maximum non-PV work that
can be performed by the system, whereas, for a non-spontaneous change of state, the magnitude of dG is
equal to the minimum non-PV work that must be performed on the system to bring about the change in
state.

As G is a state function, the value of dG is the same for a given change of state, whether it is carried out
reversibly or irreversibly; it is the value of dIW that depends on reversibility.
If the T and P are constants, then from

dA = —PdV —SdT + > _ wdn;
all
components

dG = Z wdn;

which means that the criteria for spontaneity and equilibrium become (when the only constraint on the
system is the constant pressure of the atmosphere and only PdV work is performed)

Z w;dn; < 0 (constant 7, P)

we have

When the system is placed under additional constraints, the relationships for non-PdV work are
Z pdn; < 0Wye (constant 7, P)
i

in which the equality applies to a reversible process and the inequality applies to an irreversible process.

The chemical potential for chemical, biological, or geological systems is analogous to the height, or
gravitational potential, for a gravitational system; chemical, biological, or geological systems change
spontaneously in the direction of decreasing chemical potential, just as an object in a gravitational field moves
spontaneously in the direction of decreasing gravitational potential (downward).



ESCAPING TENDENCY

Chemical Potential and Escaping Tendency

G. N. Lewis proposed the term “escaping tendency’ to give a strong kinetic-molecular
flavor to the concept of the chemical potential. Let us consider two solutions of iodine,
in water and carbon tetrachloride, which have reached equilibrium with each other at a
fixed pressure and temperature .

Water

o

Carbon tetrachlaoride

[n this system at equilibrium, let us carry out a transfer of
an infinitesimal quantity of iodine from the water phase to
the carbon tetrachloride phase. On the basis of

Z w.dn; < 0 (constant 7', P)

we can say that

K, (1,0) 47, (H,0) + Koyt @i ccy) = 0

In this closed system, any loss of iodine from the water
phase is accompanied by an equivalent gain in the carbon
tetrachloride thus,

— d”IE[HgD} — d”[g(CClJ,)



Hence
}-LIZ(HED]d”IE(HEDJ + ng(ccml_d”lz(HzD)] =0

It follows that

ML (H,0) — PLccly)

for this system in equilibrium at constant pressure and temperature. Thus, at
equilibrium, the chemical potential of the iodine is the same in all phases in which
it 1s present, or the escaping tendency of the iodine in the water is the same as that
of the iodine in the carbon tetrachloride. We can return to the analogy with gravita-
tional potential; stating that the 1odine in the two phases have the same chemical
potential is analogous to saying that two bodies at the same altitude have the same
gravitational potential.
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HOMOGENEOUS FUNCTIONS AND THE GIBBS-DUHEM RELATION
In connection with the development of the thermodynamic concept of partial molar quantities, it is desirable
to be familiar with a mathematical relationship known as Euler’s theorem. As this theorem is stated with
reference to “homogeneous” functions, we will consider briefly the nature of these functions.
Definition: As a simple example, let us consider the function
u(x,y) = ax? + bxy + cy?
If we replace the variables x and y by Ax and Ay respectively, then we have the transformed function
u*(Ax, Ay) = a(Ax)? + b(Ax)(Ay) + c(Ay)? = 2%2(ax? + bxy + cy?) = 12u(x,y)
We say that u(x, y) is a homogeneous function of degree 2. Euler’s theorem says that, for any homogeneous

function, f(x,y), of degree n,

Homogeneous functions of degree 0 and 1 are called intensive and extensive properties of a system. For
example, the volume V, or the Gibbs free energy G of a system are extensive properties, while molar volume
V, or density p are intensive properties. Say, for a system having two components, with mole numbers 1, and
n,, then, the volume of the system is
V= f(nli nz)
Since volume is an extensive property, applying Euler’s theorem, we have
v A R AT A
n(2) #na(P) =vendindis
where, V; and V/, are the partial molar volumes of the two components. Similarly, the Gibbs free energy G is
an extensive property. Thus, G = f(p, T, n4,ny). Applying Euler’s theorem at constant T and p, we have

(ac ) N ( G ) G
nm\=— No\z— =
on, P T, an, oI,
oG =Ny gy
The total differential of G at constant T and p is
dGyr = nyduy + npdpy + pydng + ppdn, (1)
Also,

dG,r = ((‘)G ) dn, + (aG ) d
pT — anl ng anz n;

p,T,n, p,T,nq
or, dGyr = prdng + pydn, 2
Comparing Egs. (1) and (2), we have
niduy + npdpy + pidng + pardny = pydng + ppdn,
or, nydpy + npdp, (3)
Eqg. (3) is called the Gibbs-Duhem equation. For a general multi-component system (say, having some n
number of components), Gibbs-Duhem relation may be written as
n

z Tlid,lli =0

i=1

CHEMICAL EQUILIBRIUM IN SYSTEMS OF VARIABLE COMPOSITION
We can apply the criterion of equilibrium expressed in

Z uidn; < 0 (constant T, P)
]

to chemically reacting systems. Consider the reaction

aA+bB+--=71R+5sS+ -
in which all reactants and products are in the same phase. If this chemical reaction is at equilibrium at a fixed
pressure and temperature, it follows from

dG = z widn; andz u;dn; < 0 (constant T, P)
i I

that

dG = pygdny + pugdng + -+ + updng + pusdng + - =0
However, the various dn’s in the above equation are not independent, but, in view of the stoichiometry of
the reaction, they must be related as follows:
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dny dng dngp dng

a b T s
As reactants disappear and products appear in the reaction, the corresponding dn’s in the above equation
have opposite signs. In view of the series of equalities in this equation, let us define a quantity d¢ such that

dny dng dnp dng dn;

a b r s V;
in which v; is merely a generalized notation for the dimensionless stoichiometric coefficients, —a, — b, r, s,
and so on. The quantity £ is called the extent of reaction or the progress variable, and it has the dimensions
of amount of substance and has the unit mol. Using the last equation,

dG = ,LlAdnA + MBdnB + 4 MRan + ‘Llsdns +--=0

can be rewritten as
dG = —ap,d& — bugdé — -+ + rugdé + sugdé +--- =0
Alternatively,
aG
(8_5) =TUR + Sis — apig — bug =0
TP
is a criterion of equilibrium at constant temperature and pressure. The derivative (0G /0¢) 1 p is the slope of
a plot of the Gibbs function of the system G against &, the progress variable. When & = 0, the system is all
reactants, and when & = 1, the system is all products. At equilibrium, G is at a minimum, and the slope is
equal to zero. If (0G/0&)rp = rpug + spus — apy — bug = 0 is integrated with respect to ¢ from £ = 0 to
& =1 at constant values of the chemical potentials (fixed composition of the reacting mixture), then we
obtain, at equilibrium,

/
/7
/
7/
& s
s
No Equilibrium ,’
(a(,_a:)g){;do
Q £ 1
1
= Gz = s = [ (57) = D=0
$/rp

in which it is understood that v; is a negative number for the st0|ch|ometr|c coefficients of the reactants and
a positive number for the products. The result is a molar quantity, because the integration leads to a mole of
reaction in the sense given in the definition of mole. As the composition of the reacting mixture does not
change when one mole of reaction occurs, we say that we are using an “infinite copy model”, which is a
system so large that the conditions of constant composition are satisfied. Another way of writing the above
equation is

Z(lvll.ul)reactants Z(lvll.ul)products

The concept of escaping tendency aIso can be applied to the chemical reaction ad + bB+ - =rR +sS +
. At equilibrium, from the above equation, we can say that the sum of the escaping tendencies of the
reactants is equal to the sum of the escaping tendencies of the products. For a chemical transformation
capable of undergoing a spontaneous change, it follows from
dny dnB dnp dng dn;
z;iidnl 0 (constantT,P) anddé = ——=—-———"=. = —=— = — thatz vy < 0.
i a b r s V; :
l

i
That is,
Z(Ivll.“z)reactants Z(lvzlﬂl)products

Thus, for a spontaneous reaction, we can say that the sum of the escaping tendencies for the reactants is
greater than the sum of the escaping tendencies for the products.
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Mixtures of Ideal Gases
We define an ideal gas on the basis of two properties:

ou
PV = nRT (equation of state) and (—) = 0 (no interaction)
T

av
We define an ideal gas mixture as one that follows Dalton’s law:
p RT N RT P RT
B A AL
Q L
ASpmixing = % = —n4RInX, —nzRInXz = —ZniR InX;

L
As both X, and Xp are less than 1, ASp,ixing is @ positive quantity. For the reversible mixing, the entropy
change in the surroundings is equal, but opposite in sign, and the total entropy change is zero. If the mixing
process were allowed to proceed irreversibly by puncturing the two pistons, AS for the system would be the
same, but AS for the surroundings would be zero because no work would be performed and no heat would
be exchanged. Thus, the total change in entropy for the irreversible process would be positive. Therefore,
AGmixing = MaRT In Xy + ngRT In X = ZniRT In X;

L

The Chemical Potential of a Component in an Ideal Gas Mixture
AGpixing is also equal to the difference between the Gibbs free energies of the mixture and that of the pure
gases (unmixed). Thus,
AGl‘nixing = Gmixture — Gpure gases = [Maka + Nplplmixture — [MaGa + NeGelpure gases
where any G; is molar free energy of the pure gas i. From (0G/dP); =V and PV = nRT we can obtain for
the change in Gibbs function in the isothermal expansion of an ideal gas:
P,
AG = nRTlnP—

1
If the change in state is the expansion of one mole of an ideal gas from a standard pressure P° = 0.1 MPa to

a pressure P, then
AG =G —G° =RTIn(P/P°) = G =G°+ RTIn(P/P°
Substituting for G from the above equation into the expression for AGnixing:
AGmixing =Ngly + NpUp — Ny [GX + RT ln(P/PO)] —nNp [Gl(?) + RT ln(P/PO)]
From, AGmixing = naRT In X4 + ngRT In Xp, and the last equation,
nuRT In X, + ngRT InXg = nyuy + ngug — ny[G2 + RT In(P/P%)] — ng[GY + RT In(P/P°)]
The coefficients of ny and ng on the two sides of the above equation must be equal. Hence,
RTInX, = uy — G2 — RT In(P/P°)

0 0 0 PX,
s g =G4 +RTInX, + RTIn(P/P°) =G, + RTIn (W)

and, similarly for ug. We shall define the partial pressure of an ideal gas as the product of the pressure of the
gas and its mole fraction in the mixture. Thus, p4 = PX,4. Hence,

s =G+ RTIn (%)
We have seen that, AG = G — G° = RT In(P/P°) which means that

G =G°+ RTIn(P/P%)
This equation is of a form identical to the above expression for u4, which gives the chemical potential of a
component of an ideal gas mixture, except that for the latter, partial pressure is substituted for total pressure.
If the standard state of a component of the mixture is defined as one in which the partial pressure of that
component is 0.1 MPa, then u3 = G2 and we can write

ty =S + RTIn (%)
Chemical Equilibrium in Ideal Gas Mixtures
Consider the reaction

aA(pa) + bB(pg) = rR(pg) + sS(ps)

in which all reactants and products are in the same phase.
We have already seen that at equilibrium,
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1
AG=GZ—61=f
0

Therefore, for the above reaction,

aG p 0
(6E>T,P §= Zviﬂi =
AG = —apy — bug + g + sps
Using u; = P + RT In(p;/P®) in the above equation,
AG = —alug + RT In(p,/P°)] — b[ug + RT In(pg/P°)]
+7[uf + RT In(pg/P®)] + s[ug + RT In(ps/P°)] = 0

—apl — bul +rud + su2 = aRTIn(p,/P°) + bRT In(pg/P°®) — rRT In(pg/P°) — sRT In(ps/P°)

—ap — bul + rud + spd = RT In(p,/P°)® + RT In(p/P°)” — RT In(pr/P°)" — RT In(ps/P°)*
We define: —au§ — bul + rud + su = AG°
(pR/PO)r(ps/PO)S]
(a/PO)* 05/ PO ] itibrium
As AGY is a constant at constant T, the quantity in brackets is also a constant at constant T, and, in particular,
independent of the total pressure and the initial composition of the system. We define the equilibrium
constant in terms of partial pressures for a mixture of ideal gases, as

B (pR/PO)r(pS/PO)S]

- 0 0\b

] @a/P*@5/PP ] ioriam

The last two leads us to, AG® = —RT In Kp. The subscript P distinguishes the ideal gas equilibrium constant
in terms of partial pressures from other forms for the constants that will be derived for real systems.

~AG® = —RTIn

Kp
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Chemical Equilibrium in Ideal Gas Mixtures
Consider the reaction
aA(pa) + bB(pg) = rR(pr) + sS(ps)
in which all reactants and products are in the same phase.
We have already seen that at equilibrium,
1
dé = zvi wi =0
L

26=6,-6= [ (5)
P o ee
AG = —apy — bug + g + sy

Therefore, for the above reaction,
Using u; = P + RT In(p;/P®) in the above equation,

AG = —aluj + RT In(ps/P®)] — blug + RT In(pp/P°)]

+7[puR + RT In(pr/P°)] + s[u + RT In(ps/P%)] = 0

—apl — bul + rud + sud = aRT In(p,4/P°) + bRT In(pg/P°) — rRT In(pg/P°) — sRT In(ps/P°)
—apl — bpd +rud + sud = RTIn(pa/P°)® + RT In(p/P°)? — RT In(pr/P°)" — RT In(ps/P°)*
We define: —au§ — bul + rul + su = AG°
(pR/PO)r(ps/PO)S]
(0a/P)*(0p/P°)’ ] itibrium
As AGC is a constant at constant T, the quantity in brackets is also a constant at constant T, and, in
particular, independent of the total pressure and the initial composition of the system. We define the
equilibrium constant in terms of partial pressures for a mixture of ideal gases, as

_ (pR/PO)T(ps/PO)S]

04/ P)(5/P)] quitibrium
The last two leads us to, AG® = —RT In Kp. The subscript P distinguishes the ideal gas equilibrium
constant in terms of partial pressures from other forms for the constants that will be derived for real
systems. Now, if we think of a situation that is not in equilibrium, then,

AG = —a[u§ + RT In(ps/P®)] = b[u$ + RT In(ps/P°)]
+7[ug + RT In(pg/P%)] + s[ug + RT In(ps/P?)]

and since the system is not at equilibrium, the RHS=# 0.

T,p

~ AG° = —RTIn

Kp

(pr/P%)" (ps/P%)°
(pa/P®)%(pg/PO)P

= AG = (rud + sud — apl — bud) + RTIn

(pR/PO)T(pS/PO)S]
b
(pA/PO)a(pB/PO) not at equilibrium
where, Q" for the quotient of pressures not at equilibrium, that is,
0 = (pR/PO)T(pS/PO)S]
- b
B B (pA/PO)a(pB/PO) not at equilibrium
~AG = AG° + RTInQ* = —RTInKp, + RTInQ* = RT In(Q*/Kp)
Thus, if the initial quotient of pressures is greater than Kp, AG,, is positive and the reaction will be

spontaneous to the left. Whereas if the initial quotient of pressures is less than Kp, AG,, is negative
and the reaction will be spontaneous to the right. Now, from

_ [@r/PO) (ps/PO):
P (pa/PO)(ps/PO)?

]not at equilibrium

or, AG = AG° + RTIn = AG° + RT In Q*

]equilibrium
we conclude that:
1. The equilibrium constant, Kp is a dimensionless quantity, and
2. Also, that Kp depends on the choice of standard state, but not on the units used to describe
the standard state pressure.
The equilibrium constant has the same value whether P’is expressed as 750.062 Torr, 0.98692 atm,
0.1 MPa, or 1 bar.
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How does the equilibrium constant K depend on T?

We have seen that InKp
AGO = —RTanp Slope — _AHO/R
and, also
AG® = AH® — TAS®
Therefore, B ) A.S_'O/R
—RTInKp = AH® — TAS®
so that,
AH®\1 AS° 1T
InKp=|-——|=+— /
e ( R )T "R

A plot of InKp (along Y axis) against 1/T (along X axis) will give a straight line with a slope of
(= AH°/R) and a Y intercept of AS?/R. From the Gibbs-Helmholtz relation,
[8(AG°/T)] AH0

so that,

dr

since both Kp and AG° are independent of P. Therefore, from
AG® = —RT InKp

d AGO] AH®

we can write,

RT InKp AH

dT[ ]p -7
_dInKp AHO dInKp AHC
"7 dT  RT? {d(l/T)} R

This equation is known as van’t Hoff equation. For an endothermic reaction, AH® > 0, and the RHS is
positive, so that In Kp (and also Kp) increases with increase in temperature. For an exothermic
reaction, AH® < 0, and the RHS is negative, so that In K, (and also Kp) decreases with increase in
temperature.

THE FUGACITY FUNCTION OF A PURE REAL GAS
We have expressed the molar free energy of an idea gas as
G=G°+RTInP/P°
using the ideal gas equation of state V = nRT /P and the standard relation (8G/dP); = V by solving
the integral

P P
nRT
P° P°

Similarly, we obtained the chemical potential of a component of an ideal gas mixture as

fa = g + RTInp,/P°
from an analysis of the van’t Hoff mixing experiment, using the same integral. Is it possible to obtain
similar expressions for systems of real gases? G. N. Lewis: Defined a new function, the fugacity f, with
a universal relationship to the chemical potential, and let the dependence of f on P vary for different
gases. The fugacity is defined to have the dimensions of pressure. An advantage of the f over y as a
measure of escaping tendency is that an absolute value of the fugacity can be calculated, whereas an
absolute value of the chemical potential cannot be calculated. One part of the definition of fugacity
can be stated as

u=p+RTIn(f/f°)
in which u° is a function of T only, that is, u® = u°(T). The standard chemical potential is characteristic
of each gas and the standard state chosen. For a pure gas, the value of £ is chosen equal to P°, 0.1
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MPa. As all gases approach ideality as their pressure is decreased, and as the above equation is of the
same form as the one for an ideal gas, it is convenient to complete the definition of f by stating that,

})irr(l) f/P=1
That is, as the pressure approaches zero, the fugacity approaches the pressure.

Ideal gas, f =P
/
// Standard
state
100 kPa Real gas /e o
(Ibary [~ — 7 7 7T TN
frea = F / L’/
P (not standard ~~"| Real gas fo=fo
a - real =
f state) A (not standard state)

100 kPa (1 bar)
P/kPa

The standard state for a real gas is chosen as the state at which the f is equal to 0.1 MPa, 1 bar, along
a line extrapolated from values of f at low pressure. The standard state for a real gas is then a
hypothetical 0.1 MPa standard state. Therefore, from u = u® + RT In(f/f°), we can see that the
change in the Gibbs function for the isothermal expansion of a real gas is,

AG = nRTln(fz/fl).
As the pressure approaches zero, })irr(l) f/P = 1applies, and AG approaches the value calculated from

AG = nRT In(P,/P,). Therefore, from AG = nRT In(f,/f;), which for one mole may be expressed as

dG = RTdIn f, and .
(%) _ (%% ~7,
o)y ~\aP ),

Wwe can write,

since f° is independent of P.

Change of Fugacity with Temperature
Let us consider an isothermal process in which a gas is transformed form one state A at a pressure P
to another A* at a different pressure P*. Such a transformation can be represented as follows:
A(P) = A*(P")
The change in the Gibbs function for such a transformation is given by the expression
MGy =" =t = RTIn(f*/f") = RTIn(f/f") = RTIn(f*/f)
so that

= RIn(f"/f)

~|E,
~I=
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Change of Fugacity with Temperature
Let us consider an isothermal process in which a gas is transformed form one state A at a pressure P to another A*
at a different pressure P*. Such a transformation can be represented as follows:
A(P) = A*(P)
The change in the Gibbs function for such a transformation is given by the expression
AGy = p* —u=RTIn(f*/f") = RTIn(f/f") = RTIn(f*/f)
so that

wou

F—7=RMUVﬁ

The partial derivative of the fugacity with respect to temperature is given by
a(u/T) a(u/T) _R(alnf*> R((’“Hf)
ar |, oT B oT Jp+ T /p

Now, we know that

_ _ p  Hpy
Gp=Hy,—TSy=2>pu=Hp—TSy ===——5,

T T
Now, since, (8G/0T)p = —S = (Ou/0T)p = —S,
u_ Hy (6u> (au) u_ Hpy
—= — = - — R
P P T

"t~ 1 "\or oT T
l(‘l‘) K Hw [0G/D)]_ Hm
T\aT/), T2 T2 oT |, T2

Therefore, from

d(u*/T) d(u/T) dlnf* dlnf
[ ; p*_[u— :R( ; )P*_R( 7 >P

aT aT aT aT
and
[O(M/T) _Hm
oT p T?
we have,
[a(y*/T) _[a(y/n _ _Hi Hn
aT p aT P T2 T2
] dInf* dnf B H)  Hpy
( oT )P*_( oT )P__WJ’W

If the pressure P* approaches zero, the ratio of the fugacity to the pressure approaches one, and we can write
(alnf*) B <alnP*) _ 0
aT P* B BT p* -

(alnf*>P* 3 (alnf>P _ Hy, N Hp,

Therefore, from

oT aT " RT2 ' RTZ

((’)lnf*) B <alnP*) _ 0
OT p* B OT p* B

dInf Hy, —Hpy
( oT )P ~ RTZ

in which Hy, is the partial molar enthalpy of the substance in State A%, that is, the state of zero pressure. Therefore,
the difference (Hy, — Hy,) is the change in molar enthalpy when the gas goes from State A to its state of zero
pressure, that is, at infinite volume. The pressure dependence of this enthalpy change is given by the expression

and

we can write,
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[G(H* - m)] a;; )

because, (0H;,/dP)r = 0, as H}, is the partial molar enthalpy at a fixed (zero) pressure. (0Hy,/dP) is called the
pressure coefficient of molar enthalpy. We know, from the Joule-Thomson (JT) effect, that the pressure coefficient
of molar enthalpy, (0Hy,/0P)r, is related to the JT coefficient, u;r by the relation

9H,,
(G7), = ~Comttn

Therefore, combining

0(Hy — Hp)| (6Hm> d(@Hm) _ ¢
ap =~ \op ), 2"\ gp ), T " tembr
we get,
a(H* )
hm ] = Cpmyr-

Because of this relationship between (Hy,, — H ) and p;7, the former quantity frequently is referred to as the Joule-
Thomson enthalpy. The pressure coefficient of this JT enthalpy change can be calculated from the known values of
the JT coefficient and the heat capacity of the gas. Similarly, as (H}, — Hy,) is a derived function of the fugacity,
knowledge of the temperature dependence of the latter can be used to calculate the JT coefficient. As the fugacity
and the JT coefficient are both measures of the deviation of a gas from ideality, it is not surprising that they are
related.

A quick recap of some results for a system of van der Waals gas:
From the definition of Helmholtz free energy, the total infinitesimal change in it is dA = —PdV — SdT, so that
(0A/0V)y = —P = dA = —PdV (T constant). For a system of n moles of a van der Waals gas, we have

nRT  n?a
dA = — ——|dV

V—-nb V2
V2
" A = jnRT v + f AV = —nRTIn 22— 2(1 1)
; V —nb n rlV1 LA\
Vi

From the definition of Gibbs free energy, the total infinitesimal change in it is dG = VdP — SdT , so that
(0G/0P)y =V = dG = VdP (T constant). While evaluating the integral, it is convenient to replace dP in terms
of dV. The van der Waals equation of state is

b nRT  n®a P nRT v+ ZnZadV
= _—_— = - [
V—-nb V2 (V —nb)? V3
vap= "BV, Pme
- ~ (V —nb)? V2
Therefore,
1
AG—deP— nRTfde+2nafﬁdV
Vi Vi
vy Vy
V—nb+nb ) 1
or, AG = —nRT de + 2n“a f ﬁdV
Vi Vi
V2 V2 V2
or, AG=—TlRTf _nde nRTfde+2n af—dV
Vi 141
2 AG = —nRTIn2—"0 4 2bRT( i ! ) 2 (1 1)
A =Ry T T V,—nb V,—nb n‘a v, v,

Therefore, we have determined the total changes in A and G for a system composed of n moles of a van der Waals
gas under an isothermal reversible expansion of the gas from V; to V.
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We have seen from the definition of Gibbs free energy, the total infinitesimal change initis dG = VdP — SdT , so
that (0G/0P)r =V = dG = VdP (T constant). Note that, the above form of dG is absolutely general and is
applicable for all substances. Also, from y = u” + RT ln(f/fo), we can see that the change in the Gibbs function
for the isothermal expansion of a real gas is,

AG = nRT In(f3/f1),
which for a mole becomes, Ay = u, — y; = nRT In(f,/f1). Therefore, let us separately calculate AG for a mole of

an ideal and a real gas, by noting that in general

P
AG,, = f Vn,dP = Au
Py
Thus, we have
P
P,
f Vm, idealdP = Up,, ideal — Hp;, ideal = RT lnP_
Py 1
and
P
_ _ f2
Vm, realdP = HUp,, real — Hp;, real = RT ln?
1
P
Taking the difference, we have
P
fZ P2
f (Vm, real — Vm, ideal)dP = RTIn—=——RT lnP—
. f )
1

so that,

fi/\P,

Let P; be allowed to approach zero, so that, gimo fi/P1 =1, hence
1—)

P
f2\ (P
RT In (-)( 1) = f(vm, real — Vm, ideal)dp
Py

Py
f2
RT In (P_) = f (Vm, real — Vm, ideal)dp
2
0
Now, for a real gas,

Vm, real = Z? = ZVm, ideal

where Z is the compressibility factor of the gas. Therefore, from
P

f2
RT In (P_) = f (Vm, real — Vm, ideal)dp
2 0
and,

Vm, real = Z? = ZVm, ideal

we have,
P,

fz)_ zZ-1
ln(P2 = 2 dpP

The integral over P in the above expression may be performed

(a) if the data for Z (or V) are available, or

(b) if the analytical expression for Z (T, P) (or Vi, in terms of P) is available.
In general, the value of f depends upon the value of Z. If Z is less than one, the RHS of the above equation will be
negative and hence f, will be smaller than P,. If Z is greater than one, the RHS of the above equation will be positive
and hence f, will be greater than P,.
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S }*%-/bvhfi' leﬂvt’ ’NZ/{P‘!‘RT[W)(
= (/“ou,)Pi- R lwbo)f RThex, |
= /»Lu+ RT b, Chom- pot. of Ik puve

Solvunt -

Example 1
Say we have an equation of state for a gas which is P(V,, —b) = RT, and let us find out an expression for the
fugacity, f, of this gas. Thus, for the given gas, Vi, = b + (RT/P). Hence,

PV. P/ RT p p
= (b )=1+b—:>Z—1:b—

=%r "rT\°t RT RT

Therefore, we have,

and

P
If bP/RT is small, we may write,

f_ (bP>_1+bP+1(bP>2+1<bP>3+ L PP _RT+bP
p-P\Rr) T " TRr " 21\RT) T31\RT ¥ TRT T T RT

From the given equation of state, we have, RT + bP = PV,,, and hence,
V P
i =p (_m) —
p RT Pideal

PzzfpideaI:P:\/fPideal

That is, the pressure of the gas is the geometric mean of the ideal pressure and fugacity. [Recall that the geometric

P
f Z-1 1 P bP f bP
ln(—)z —szf—b—dP:—:—:exp(—)
0

Therefore,

mean, GM of n numbers, a,, a,, az, -, a,isGM = ’i/al “ Ayt Azt Ayl

Example 2

Given a situation where we have an expression for the fugacity, f, of a certain real gas. Say, it is given that,
f=P+aP?

where a is a function of T only, that is, « = a(T). Can we find out the equation of state for the gas? Yes, we can,
and let us do it. Given that,

f=P+aP2=>£=1+aP=>ln£=ln(1+aP)
Since,
P P
1<f)—fz_1dp have, In(1 + P—fz_ldP
nP = P ,we have, In aP) = P
0 0
Now,
P P P
In(1 + p)—f T _ap thtf l dp—fz_ldp
T = [T 0 [ T ™ T ) TP
0 0 0
) a _Z—1
“14aP P
From,
a _Z—1
1+aP P

we rewrite as,
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@ (Vo/Vmidea) =1 _ (nP/RT)—1
1+aP P P

Therefore,

PVm_1+ aP
RT 1+ aP

is the desired equation of state for the gas whose fugacity is given by f = P + aP?.

Thermodynamics of Solutions: The Concept of Ideal Solutions

A solution is a homogeneous mixture of chemical species dispersed on a molecular scale. By this definition, a
solution is a single phase. A solution may be gaseous, liquid, or solid. Binary solutions are composed of two
constituents, ternary solutions three, quaternary four. The constituent present in the greatest amount is ordinarily
called the solvent, while those constituents — one or more — present in relatively small amounts are called the
solutes. The distinction between solvent and solute is an arbitrary one. We shall employ the words solvent and
solute in the ordinary way, realizing that nothing fundamental distinguishes them.

Types of solution:
* Gaseous solutions: Mixtures of gases or vapors
* Liquid solutions: Solids, liquids, or gases, dissolved in liquids
* Solid solutions:
Gases dissolved in solids: H, in palladium, N, in titanium
Liquids dissolved in solids: Mercury in gold
Solids dissolved in solids: Copper in gold, zinc in copper (brasses)
The ideal gas law is an important example of a limiting law. As the pressure approaches zero, the behavior of any
real gas approaches that of the ideal gas as a limit. Thus, all real gases behave ideally at zero pressure, and for
practical purposes they are ideal at low finite pressures. From this generalization of experimental behavior, the ideal
gas is defined as one that behaves ideally at any pressure. We arrive at a similar limiting law from observing the
behavior of solutions.

For simplicity, we consider a solution composed of a volatile solvent and one or more involatile solutes, and examine
the equilibrium between the solution and the vapor. If a pure liquid is placed in a container that is initially evacuated,
the liquid evaporates until the space above the liquid is filled with vapor. The temperature of the system is kept
constant. At equilibrium, the pressure established in the vapor is p°, the vapor pressure of the pure liquid. If an
involatile material is dissolved in the liquid, the equilibrium vapor pressure p over the solution is observed to be
less than over the pure liquid.

Vapor L Vapor
—

)
)
=

]

R

1
_‘I
|"'—"\‘:1-—-l
RN

—— ———1 P

= Pure liquid = |7 — =~ Solution - — ?
————— - - — 0 %, 1
Since the solute is involatile, the vapor consists of pure solvent. As more involatile material is added, the pressure

in the vapor phase decreases. A schematic plot of the vapor pressure of the solvent against the mole fraction of the
involatile solute in the solution, x, is shown on the right. At x, = 0, p = p°; as x, increases, p decreases.

The important feature of the plot is that the vapor pressure of the dilute solution (x, near zero) approaches the
dashed line connecting p° and zero. Depending on the particular combination of solvent and solute, the
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experimental vapor-pressure curve at higher concentrations of solute may fall below the dashed line, or above it,
or even lie exactly on it. However, for all solutions the experimental curve is tangent to the dashed line at x, = 0,
and approaches the dashed line very closely as the solution becomes more and more dilute.

The equation of the ideal (dashed) line is
p=p°—p°x; =p°(1 —x2)
If x is the mole fraction of solvent in the solution, then x + x, = 1, and the equation becomes,
p = xp°

which is Raoult's law. It states that the vapor pressure of the solvent over a solution is equal to the vapor pressure
of the pure solvent multiplied by the mole fraction of the solvent in the solution. Raoult's law is another example of
a limiting law. Real solutions follow Raoult's law more closely as the solution becomes more dilute. The ideal solution
is defined as one that follows Raoult's law over the entire range of concentrations. All real solutions behave ideally

as the concentration of the solutes approaches zero.
p

0 1-x 1
From p = xp°, the vapor pressure lowering, p° — p, can be calculated,
p°—p=p°—xp°=(1—-x)p°=>p°—p = x3p°
The vapor pressure lowering is proportional to the mole fraction of the solute. If several solutes, 2,3, ..., are present,
then it is still true that p = xp°; but, in this case, 1 —x = x, + x5 + --- and
p°—p = (xz +x3+ - )p°
In a solution containing several involatile solutes, the vapor pressure lowering depends on the sum of the mole
fractions of the various solutes. Note particularly that it does not depend on the kinds of solutes present, except
that they be involatile. The vapor pressure depends only on the relative numbers of solute molecules. As a
generalization of the behavior of real solutions the ideal solution follows Raoult's law over the entire range of
concentration. Taking this definition of an ideal liquid solution and combining it with the general equilibrium
condition leads to the analytical expression of the chemical potential of the solvent in an ideal solution. If the
solution is in equilibrium with vapor, the requirement of the second law is that the chemical potential of the solvent
have the same value in the solution as in the vapor, or
Hiig = Hvap
where ;4 is the chemical potential of the solvent in the liquid phase, ), the chemical potential of the solvent in
the vapor. Since the vapor is pure solvent under a pressure p, the expression for 4y, is given by lyq, = Upap +
RT Inp. Then,
Miq = Mvap + RT Inp
Using Raoult's law, p = xp°, in this equation and expanding the logarithm, we obtain
Hiig = Hpap + RTInp°® + RTInx
If pure solvent were in equilibrium with vapor, the pressure would be p° ; the equilibrium condition is
.U;iq = Uyap + RT Inp°®
where yfiq signifies the chemical potential of the pure liquid solvent. Subtracting this equation from the preceding
one, we obtain y;;, = yfiq + RT In x. In this equation, nothing pertaining to the vapor phase appears; omitting the
subscript lig, the equation becomes
u=u°+RTInx
u is the chemical potential of the solvent in the solution, u° is the chemical potential of the pure liquid solvent, a
function of T and p, and x is the mole fraction of solvent in the solution.
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